論文の概要: GRVFL-2V: Graph Random Vector Functional Link Based on Two-View Learning
- arxiv url: http://arxiv.org/abs/2409.04743v1
- Date: Sat, 7 Sep 2024 07:18:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:51:37.556798
- Title: GRVFL-2V: Graph Random Vector Functional Link Based on Two-View Learning
- Title(参考訳): GRVFL-2V:2視点学習に基づくグラフランダムベクトル関数リンク
- Authors: M. Tanveer, R. K. Sharma, M. Sajid, A. Quadir,
- Abstract要約: 二視点学習(GRVFL-2V)モデルに基づく新しいグラフランダムベクトル汎関数リンクを提案する。
提案モデルは,マルチビュー学習(MVL)の概念とグラフ埋め込み(GE)フレームワークを取り入れ,複数の視点で学習する。
27のUCIデータセットやKEELデータセットを含む各種データセット上で提案したGRVFL-2Vモデルの評価は,ベースラインモデルよりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.2999888908665658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification performance of the random vector functional link (RVFL), a randomized neural network, has been widely acknowledged. However, due to its shallow learning nature, RVFL often fails to consider all the relevant information available in a dataset. Additionally, it overlooks the geometrical properties of the dataset. To address these limitations, a novel graph random vector functional link based on two-view learning (GRVFL-2V) model is proposed. The proposed model is trained on multiple views, incorporating the concept of multiview learning (MVL), and it also incorporates the geometrical properties of all the views using the graph embedding (GE) framework. The fusion of RVFL networks, MVL, and GE framework enables our proposed model to achieve the following: i) \textit{efficient learning}: by leveraging the topology of RVFL, our proposed model can efficiently capture nonlinear relationships within the multi-view data, facilitating efficient and accurate predictions; ii) \textit{comprehensive representation}: fusing information from diverse perspectives enhance the proposed model's ability to capture complex patterns and relationships within the data, thereby improving the model's overall generalization performance; and iii) \textit{structural awareness}: by employing the GE framework, our proposed model leverages the original data distribution of the dataset by naturally exploiting both intrinsic and penalty subspace learning criteria. The evaluation of the proposed GRVFL-2V model on various datasets, including 27 UCI and KEEL datasets, 50 datasets from Corel5k, and 45 datasets from AwA, demonstrates its superior performance compared to baseline models. These results highlight the enhanced generalization capabilities of the proposed GRVFL-2V model across a diverse range of datasets.
- Abstract(参考訳): ランダム化されたニューラルネットワークであるランダムベクトル汎関数リンク(RVFL)の分類性能は広く認識されている。
しかし、その浅い学習特性のため、RVFLはデータセットで利用可能なすべての関連情報を考慮できないことが多い。
さらにデータセットの幾何学的性質も見落としている。
これらの制約に対処するため,二視点学習モデル(GRVFL-2V)に基づく新しいグラフランダムベクトル汎関数リンクを提案する。
提案モデルは,マルチビュー学習(MVL)の概念を取り入れた複数のビューに基づいて学習し,グラフ埋め込み(GE)フレームワークを用いて,すべてのビューの幾何学的特性を取り入れた。
RVFLネットワーク, MVL, GEフレームワークの融合により, 提案したモデルにより, 以下のことを実現できる。
i)<textit{efficient learning}: RVFLのトポロジを活用することにより,提案モデルは多視点データ内の非線形関係を効率的に把握し,効率的かつ正確な予測を容易にする。
ii) \textit{comprehensive representation}: 多様な視点から情報を融合することにより、提案されたモデルがデータ内の複雑なパターンや関係を捕捉し、モデル全体の一般化性能を向上させる能力を高める。
三 GEフレームワークを利用することにより、本提案モデルは、本質的及びペナルティ的サブスペース学習基準の両方を自然に活用することにより、データセットの本来のデータ分布を利用する。
27のUCIデータセットとKEELデータセット、Corel5kの50データセット、AwAの45データセットを含む、さまざまなデータセット上で提案されたGRVFL-2Vモデルの評価は、ベースラインモデルよりも優れたパフォーマンスを示している。
これらの結果は,提案したGRVFL-2Vモデルの多種多様なデータセットに対する拡張一般化能力を強調した。
関連論文リスト
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - Multiview Random Vector Functional Link Network for Predicting DNA-Binding Proteins [0.0]
本稿では,マルチビュー学習とニューラルネットワークアーキテクチャを融合したMvRVFL(Multiview random vector functional link)ネットワークを提案する。
提案したMvRVFLモデルは、後期および初期融合の利点を組み合わせ、異なるビューをまたいだ明確な正規化パラメータを可能にする。
DBPデータセット上で提案したMvRVFLモデルの性能はベースラインモデルよりも優れており、その優れた効果を示している。
論文 参考訳(メタデータ) (2024-09-04T10:14:17Z) - Dataset Regeneration for Sequential Recommendation [69.93516846106701]
DR4SRと呼ばれるモデルに依存しないデータセット再生フレームワークを用いて、理想的なトレーニングデータセットを開発するためのデータ中心のパラダイムを提案する。
データ中心のパラダイムの有効性を示すために、我々はフレームワークを様々なモデル中心の手法と統合し、4つの広く採用されているデータセット間で大きなパフォーマンス改善を観察する。
論文 参考訳(メタデータ) (2024-05-28T03:45:34Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - FedPerfix: Towards Partial Model Personalization of Vision Transformers
in Federated Learning [9.950367271170592]
視覚変換器モデル(ViT)のパーソナライズ方法について検討する。
自己注意層と分類ヘッドがViTの最も敏感な部分であるという知見に基づいて、FedPerfixと呼ばれる新しいアプローチを提案する。
CIFAR-100、OrganAMNIST、Office-Homeのデータセットに対する提案手法の評価を行い、いくつかの先進的なPFL手法と比較してその効果を実証した。
論文 参考訳(メタデータ) (2023-08-17T19:22:30Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
拡散確率場(DPF)は、距離空間上で定義された連続関数の分布をモデル化する。
本稿では,局所構造学習に着目したビューワイズサンプリングアルゴリズムによる新しいモデルを提案する。
モデルは、複数のモダリティを統一しながら、高解像度のデータを生成するためにスケールすることができる。
論文 参考訳(メタデータ) (2023-05-24T03:32:03Z) - Variational Flow Graphical Model [22.610974083362606]
変分グラフフロー(VFG)モデルは,メッセージパッシング方式を用いて高次元データの表現を学習する。
VFGは低次元を用いてデータの表現を生成し、多くのフローベースモデルの欠点を克服する。
実験では、VFGは改良されたエビデンスローバウンド(ELBO)と複数のデータセットの確率値を達成する。
論文 参考訳(メタデータ) (2022-07-06T14:51:03Z) - Relational VAE: A Continuous Latent Variable Model for Graph Structured
Data [0.0]
シミュレーションおよび実風力発電モニタリングデータに対する構造的確率密度モデルの適用例を示す。
ソースコードとシミュレートされたデータセットを合わせてリリースします。
論文 参考訳(メタデータ) (2021-06-30T13:24:27Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。