Cross-Dataset Gaze Estimation by Evidential Inter-intra Fusion
- URL: http://arxiv.org/abs/2409.04766v1
- Date: Sat, 7 Sep 2024 08:53:17 GMT
- Title: Cross-Dataset Gaze Estimation by Evidential Inter-intra Fusion
- Authors: Shijing Wang, Yaping Huang, Jun Xie, YiTian, Feng Chen, Zhepeng Wang,
- Abstract summary: We propose a novel Evidential Inter-intra Fusion EIF framework for training a cross-dataset model.
We build independent single-dataset branches for various datasets.
We further create a cross-dataset branch to integrate the generalizable features from single-dataset branches.
- Score: 38.93368421481945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving accurate and reliable gaze predictions in complex and diverse environments remains challenging. Fortunately, it is straightforward to access diverse gaze datasets in real-world applications. We discover that training these datasets jointly can significantly improve the generalization of gaze estimation, which is overlooked in previous works. However, due to the inherent distribution shift across different datasets, simply mixing multiple dataset decreases the performance in the original domain despite gaining better generalization abilities. To address the problem of ``cross-dataset gaze estimation'', we propose a novel Evidential Inter-intra Fusion EIF framework, for training a cross-dataset model that performs well across all source and unseen domains. Specifically, we build independent single-dataset branches for various datasets where the data space is partitioned into overlapping subspaces within each dataset for local regression, and further create a cross-dataset branch to integrate the generalizable features from single-dataset branches. Furthermore, evidential regressors based on the Normal and Inverse-Gamma (NIG) distribution are designed to additionally provide uncertainty estimation apart from predicting gaze. Building upon this foundation, our proposed framework achieves both intra-evidential fusion among multiple local regressors within each dataset and inter-evidential fusion among multiple branches by Mixture \textbfof Normal Inverse-Gamma (MoNIG distribution. Experiments demonstrate that our method consistently achieves notable improvements in both source domains and unseen domains.
Related papers
- Uni$^2$Det: Unified and Universal Framework for Prompt-Guided Multi-dataset 3D Detection [64.08296187555095]
Uni$2$Det is a framework for unified and universal multi-dataset training on 3D detection.
We introduce multi-stage prompting modules for multi-dataset 3D detection.
Results on zero-shot cross-dataset transfer validate the generalization capability of our proposed method.
arXiv Detail & Related papers (2024-09-30T17:57:50Z) - FissionVAE: Federated Non-IID Image Generation with Latent Space and Decoder Decomposition [9.059664504170287]
Federated learning enables decentralized clients to collaboratively learn a shared model while keeping all the training data local.
We introduce a novel approach, FissionVAE, which decomposes the latent space and constructs decoder branches tailored to individual client groups.
To evaluate our approach, we assemble two composite datasets: the first combines MNIST and FashionMNIST; the second comprises RGB datasets of cartoon and human faces, wild animals, marine vessels, and remote sensing images of Earth.
arXiv Detail & Related papers (2024-08-30T08:22:30Z) - Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets [11.105392318582677]
We propose a principled approach for aligning and jointly embedding a pair of datasets with theoretical guarantees.
Our approach leverages the leading singular vectors of the EOT plan matrix between two datasets to extract their shared underlying structure.
We show that in a high-dimensional regime, the EOT plan recovers the shared manifold structure by approximating a kernel function evaluated at the locations of the latent variables.
arXiv Detail & Related papers (2024-07-01T18:48:55Z) - First-Order Manifold Data Augmentation for Regression Learning [4.910937238451485]
We introduce FOMA: a new data-driven domain-independent data augmentation method.
We evaluate FOMA on in-distribution generalization and out-of-distribution benchmarks, and we show that it improves the generalization of several neural architectures.
arXiv Detail & Related papers (2024-06-16T12:35:05Z) - CoRAST: Towards Foundation Model-Powered Correlated Data Analysis in Resource-Constrained CPS and IoT [16.821900475733102]
Foundation models (FMs) can harness distributed and diverse environmental data by leveraging prior knowledge.
We introduce CoRAST, a novel learning framework that utilizes FMs for enhanced analysis of distributed, correlated heterogeneous data.
Our evaluation on real-world weather dataset demonstrates CoRAST's ability to exploit correlated heterogeneous data.
arXiv Detail & Related papers (2024-03-27T11:11:06Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
Generative adversarial networks (GANs) usually struggle in learning from highly diverse data, whose underlying manifold is complex.
We show that score matching serves as a promising solution to this issue thanks to its capability of persistently pushing the generated data points towards the real data manifold.
We propose to improve the optimization of GANs with score matching regularity (SMaRt)
arXiv Detail & Related papers (2023-11-30T03:05:14Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Meta-analysis of heterogeneous data: integrative sparse regression in
high-dimensions [21.162280861396205]
We consider the task of meta-analysis in high-dimensional settings in which the data sources are similar but non-identical.
We introduce a global parameter that emphasizes interpretability and statistical efficiency in the presence of heterogeneity.
We demonstrate the benefits of our approach on a large-scale drug treatment dataset involving several different cancer cell-lines.
arXiv Detail & Related papers (2019-12-26T20:30:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.