論文の概要: Leveraging LLMs, Graphs and Object Hierarchies for Task Planning in Large-Scale Environments
- arxiv url: http://arxiv.org/abs/2409.04775v2
- Date: Tue, 10 Sep 2024 11:43:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 12:03:11.238548
- Title: Leveraging LLMs, Graphs and Object Hierarchies for Task Planning in Large-Scale Environments
- Title(参考訳): 大規模環境におけるタスクプランニングのためのLCM, グラフ, オブジェクト階層の活用
- Authors: Rodrigo Pérez-Dattari, Zhaoting Li, Robert Babuška, Jens Kober, Cosimo Della Santina,
- Abstract要約: この研究は、LLMに符号化されたコモンセンスの知識を活用して、複雑なシナリオを扱うための計画手法を強化する。
7-DoFマニピュレータを用いた実世界の検証とともに,家庭シミュレーション環境における広範囲な実験を通して,本システムの有効性を実証する。
- 参考スコア(独自算出の注目度): 6.113435902560451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planning methods struggle with computational intractability in solving task-level problems in large-scale environments. This work explores leveraging the commonsense knowledge encoded in LLMs to empower planning techniques to deal with these complex scenarios. We achieve this by efficiently using LLMs to prune irrelevant components from the planning problem's state space, substantially simplifying its complexity. We demonstrate the efficacy of this system through extensive experiments within a household simulation environment, alongside real-world validation using a 7-DoF manipulator (video https://youtu.be/6ro2UOtOQS4).
- Abstract(参考訳): 大規模環境におけるタスクレベルの問題の解法において,計画手法は計算的難解性に苦慮する。
この研究は、LLMに符号化されたコモンセンス知識を活用して、これらの複雑なシナリオに対処するための計画手法を強化する。
計画問題の状態空間から無関係成分を抽出するためにLLMを効率よく利用し、その複雑さを大幅に単純化する。
7-DoFマニピュレータ(video https://youtu.be/6ro2UOtOQS4。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
本稿では,言語誘導型シンボリックタスク計画(LM-SymOpt)フレームワークの最適化を提案する。
大規模言語モデルからの世界的知識と公式な推論を組み合わせた最初のエキスパートフリーな計画フレームワークです。
実験の結果,LM-SymOpt は既存の LLM ベースの計画手法よりも優れていた。
論文 参考訳(メタデータ) (2025-01-25T13:33:22Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - ET-Plan-Bench: Embodied Task-level Planning Benchmark Towards Spatial-Temporal Cognition with Foundation Models [38.89166693142495]
ET-Plan-Benchは、Large Language Models (LLMs) を用いたタスク計画の具体化のためのベンチマークである。
様々な難易度や複雑さのレベルにおいて、制御可能で多様な実施タスクが特徴である。
我々のベンチマークでは、大規模で定量化され、高度に自動化され、きめ細かな診断フレームワークとして認識されている。
論文 参考訳(メタデータ) (2024-10-02T19:56:38Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - Dynamic Planning with a LLM [15.430182858130884]
大言語モデル(LLM)はゼロショット設定で多くのNLPタスクを解くことができるが、具体化エージェントを含むアプリケーションは依然として問題である。
LLM動的プランナー(LLM-DP)は,LLMが従来のプランナーと手動で作業し,具体的課題を解決する,神経象徴的な枠組みである。
論文 参考訳(メタデータ) (2023-08-11T21:17:13Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - Model-free Motion Planning of Autonomous Agents for Complex Tasks in
Partially Observable Environments [3.7660066212240753]
部分的に知られている環境での自律エージェントの動作計画は難しい問題である。
本稿では,モデルのない強化学習手法を提案する。
提案手法は, 環境, 行動, 観測の不確実性に効果的に対処できることを示す。
論文 参考訳(メタデータ) (2023-04-30T19:57:39Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
本稿では,移動計画と深いRLを橋渡しするロボット学習のフレームワークであるELF-Pについて紹介する。
ELF-Pは、複数の現実的な操作タスクよりも、関連するベースラインよりもはるかに優れたサンプル効率を有することを示す。
論文 参考訳(メタデータ) (2023-03-16T20:09:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。