Reducing Events to Augment Log-based Anomaly Detection Models: An Empirical Study
- URL: http://arxiv.org/abs/2409.04834v2
- Date: Sun, 15 Sep 2024 02:32:30 GMT
- Title: Reducing Events to Augment Log-based Anomaly Detection Models: An Empirical Study
- Authors: Lingzhe Zhang, Tong Jia, Kangjin Wang, Mengxi Jia, Yang Yong, Ying Li,
- Abstract summary: We propose LogCleaner: an efficient methodology for the automatic reduction of log events in the context of anomaly detection.
Experimental outcomes highlight LogCleaner's capability to reduce over 70% of log events in anomaly detection, accelerating the model's inference speed by approximately 300%.
- Score: 8.110288854047417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As software systems grow increasingly intricate, the precise detection of anomalies have become both essential and challenging. Current log-based anomaly detection methods depend heavily on vast amounts of log data leading to inefficient inference and potential misguidance by noise logs. However, the quantitative effects of log reduction on the effectiveness of anomaly detection remain unexplored. Therefore, we first conduct a comprehensive study on six distinct models spanning three datasets. Through the study, the impact of log quantity and their effectiveness in representing anomalies is qualifies, uncovering three distinctive log event types that differently influence model performance. Drawing from these insights, we propose LogCleaner: an efficient methodology for the automatic reduction of log events in the context of anomaly detection. Serving as middleware between software systems and models, LogCleaner continuously updates and filters anti-events and duplicative-events in the raw generated logs. Experimental outcomes highlight LogCleaner's capability to reduce over 70% of log events in anomaly detection, accelerating the model's inference speed by approximately 300%, and universally improving the performance of models for anomaly detection.
Related papers
- Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction [1.474723404975345]
High cost of manual annotation and dynamic nature of usage scenarios present major challenges to effective log analysis.
This study proposes a novel log feature extraction model called DualGCN-LogAE, designed to adapt to various scenarios.
We also introduce Log2graphs, an unsupervised log anomaly detection method based on the feature extractor.
arXiv Detail & Related papers (2024-09-18T11:35:58Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
This study proposes a novel framework for anomaly detection in business processes.
We first reconstruct the process dependencies of the object-centric event logs as attributed graphs.
We then employ a graph convolutional autoencoder architecture to detect anomalous events.
arXiv Detail & Related papers (2024-02-14T14:17:56Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - Impact of Log Parsing on Deep Learning-Based Anomaly Detection [4.0719622481627376]
We show that there is no strong correlation between log parsing accuracy and anomaly detection accuracy.
We experimentally confirm existing theoretical results showing that it is a property that we refer to as distinguishability in log parsing results.
arXiv Detail & Related papers (2023-05-25T09:53:02Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - LogGD:Detecting Anomalies from System Logs by Graph Neural Networks [14.813971618949068]
We propose a novel graph-based log anomaly detection method, LogGD, to effectively address the issue.
We exploit the powerful capability of Graph Transformer Neural Network, which combines graph structure and node semantics for log-based anomaly detection.
arXiv Detail & Related papers (2022-09-16T11:51:58Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
We propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing.
Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages.
Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.
arXiv Detail & Related papers (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Detecting Log Anomalies with Multi-Head Attention (LAMA) [2.0684234025249713]
We propose LAMA, a multi-head attention based sequential model to process log streams as template activity (event) sequences.
A next event prediction task is applied to train the model for anomaly detection.
arXiv Detail & Related papers (2021-01-07T06:15:59Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.