Sequential Classification of Misinformation
- URL: http://arxiv.org/abs/2409.04860v1
- Date: Sat, 7 Sep 2024 15:43:19 GMT
- Title: Sequential Classification of Misinformation
- Authors: Daniel Toma, Wasim Huleihel,
- Abstract summary: A social media platform may want to distinguish between true", partly-true", and false" information.
In this paper, we consider the problem of online multiclass classification of information flow.
We propose two detection algorithms; the first is based on the well-known multiple sequential probability ratio test, while the second is a novel graph neural network based sequential decision algorithm.
- Score: 4.557963624437785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years there have been a growing interest in online auditing of information flow over social networks with the goal of monitoring undesirable effects, such as, misinformation and fake news. Most previous work on the subject, focus on the binary classification problem of classifying information as fake or genuine. Nonetheless, in many practical scenarios, the multi-class/label setting is of particular importance. For example, it could be the case that a social media platform may want to distinguish between ``true", ``partly-true", and ``false" information. Accordingly, in this paper, we consider the problem of online multiclass classification of information flow. To that end, driven by empirical studies on information flow over real-world social media networks, we propose a probabilistic information flow model over graphs. Then, the learning task is to detect the label of the information flow, with the goal of minimizing a combination of the classification error and the detection time. For this problem, we propose two detection algorithms; the first is based on the well-known multiple sequential probability ratio test, while the second is a novel graph neural network based sequential decision algorithm. For both algorithms, we prove several strong statistical guarantees. We also construct a data driven algorithm for learning the proposed probabilistic model. Finally, we test our algorithms over two real-world datasets, and show that they outperform other state-of-the-art misinformation detection algorithms, in terms of detection time and classification error.
Related papers
- Learnability Gaps of Strategic Classification [68.726857356532]
We focus on addressing a fundamental question: the learnability gaps between strategic classification and standard learning.
We provide nearly tight sample complexity and regret bounds, offering significant improvements over prior results.
Notably, our algorithm in this setting is of independent interest and can be applied to other problems such as multi-label learning.
arXiv Detail & Related papers (2024-02-29T16:09:19Z) - LOSS-GAT: Label Propagation and One-Class Semi-Supervised Graph
Attention Network for Fake News Detection [2.6396287656676725]
Loss-GAT is a semi-supervised and one-class approach for fake news detection.
We employ a two-step label propagation algorithm to categorize news into two groups: interest (fake) and non-interest (real)
arXiv Detail & Related papers (2024-02-13T12:02:37Z) - Online Auditing of Information Flow [4.557963624437785]
We consider the problem of online auditing of information flow/propagation with the goal of classifying news items as fake or genuine.
We propose a probabilistic Markovian information spread model over networks modeled by graphs.
We find the optimal detection algorithm minimizing the aforementioned risk and prove several statistical guarantees.
arXiv Detail & Related papers (2023-10-23T06:03:55Z) - Multiclass classification utilising an estimated algorithmic probability
prior [0.5156484100374058]
We study how algorithmic information theory, especially algorithmic probability, may aid in a machine learning task.
This work is one of the first to demonstrate how algorithmic probability can aid in a concrete, real-world, machine learning problem.
arXiv Detail & Related papers (2022-12-14T07:50:12Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - A Novel Resampling Technique for Imbalanced Dataset Optimization [1.0323063834827415]
classification of rare events is a common problem in many domains, such as fraudulent transactions, malware traffic analysis and network intrusion detection.
We develop two versions of Generative Silhouette Resampling 1-Nearest Neighbour (G1Nos) oversampling algorithms for dealing with class imbalance problem.
arXiv Detail & Related papers (2020-12-30T17:17:08Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - FairCVtest Demo: Understanding Bias in Multimodal Learning with a
Testbed in Fair Automatic Recruitment [79.23531577235887]
This demo shows the capacity of the Artificial Intelligence (AI) behind a recruitment tool to extract sensitive information from unstructured data.
Aditionally, the demo includes a new algorithm for discrimination-aware learning which eliminates sensitive information in our multimodal AI framework.
arXiv Detail & Related papers (2020-09-12T17:45:09Z) - Information Theoretic Meta Learning with Gaussian Processes [74.54485310507336]
We formulate meta learning using information theoretic concepts; namely, mutual information and the information bottleneck.
By making use of variational approximations to the mutual information, we derive a general and tractable framework for meta learning.
arXiv Detail & Related papers (2020-09-07T16:47:30Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
We propose a novel graph-based active learning algorithm for the task of node classification in attributed graphs.
Our algorithm uses graph cognizant logistic regression, equivalent to a linearized graph convolutional neural network (GCN) for the prediction phase and maximizes the expected error reduction in the query phase.
We conduct experiments on five public benchmark datasets, demonstrating a significant improvement over state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-09T18:00:53Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.