Floquet dynamical chiral spin liquid at finite frequency
- URL: http://arxiv.org/abs/2409.04892v1
- Date: Sat, 7 Sep 2024 19:23:11 GMT
- Title: Floquet dynamical chiral spin liquid at finite frequency
- Authors: Didier Poilblanc, Matthieu Mambrini, Nathan Goldman,
- Abstract summary: Chiral Spin Liquids (CSL) are quantum spin analogs of electronic Fractional Chern Insulators.
We show that a Dynamical CSL (DCSL) is nevertheless stabilized in a finite range of frequency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chiral Spin Liquids (CSL) are quantum spin analogs of electronic Fractional Chern Insulators. Their realizations on ultracold-atom or Rydberg-atom platforms remain very challenging. Recently, a setup of time-periodic modulations of nearest-neighbor Heisenberg couplings applied on an initial genuine spin liquid state on the square lattice has been proposed to stabilize a (Abelian) $\mathbb{Z}_2$ CSL phase. In the high-frequency limit, it was shown that time evolution can be described in terms of a static effective chiral Hamiltonian. Here we revisit this proposal and consider drives at lower frequency in a regime where the high-frequency Magnus expansion fails. We show that a Dynamical CSL (DCSL) is nevertheless stabilized in a finite range of frequency. The topological nature of this dynamical phase, as well as its instability below a critical frequency, is connected to specific features of the Floquet pseudo-energy spectrum. We also show that the DCSL can be represented faithfully by a two-dimensional time-periodic tensor network and, as in the static case, topological order is associated to a tensor gauge symmetry ($\mathbb{Z}_2$ in that case).
Related papers
- Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Dissipative time crystals with long-range Lindbladians [0.0]
We show that time-translation breaking collective oscillations persist, in the thermodynamic limit, even in the absence of spin symmetry.
This model shows a surprisingly rich phase diagram, including the time-crystal phase as well as first-order, second-order, and continuous transitions of the fixed points.
arXiv Detail & Related papers (2022-08-24T16:55:28Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phases and dynamics of ultracold bosons in a tilted optical lattice [0.0]
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt.
We chart the relation of this model to the recently studied system of ultracold Rydberg atoms.
arXiv Detail & Related papers (2021-09-06T18:00:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Nonequilibrium steady states in the Floquet-Lindblad systems: van
Vleck's high-frequency expansion approach [4.726777092009554]
Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering.
We develop a general theory for high-frequency drives with Lindblad-type dissipation to characterize and analyze NESSs.
arXiv Detail & Related papers (2021-07-16T14:05:20Z) - Bloch-like super-oscillations and unidirectional motion of phase driven
quantum walkers [0.0]
We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent phases.
We show that the average drift velocity can be well described within a continuous-time analogous model.
arXiv Detail & Related papers (2020-08-15T12:19:05Z) - Signatures of quantum chaos transition in short spin chains [0.0]
The study of the long-time oscillations of the out-of-time-ordered correlator (OTOC) appears as a versatile tool, that can be adapted to the case of systems with a small number of degrees of freedom.
We show that the systematic of the OTOC oscillations describes well, in a chain with only 4 spins, the integra-to-chaos transition inherited from the infinite chain.
arXiv Detail & Related papers (2020-04-29T19:13:58Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.