論文の概要: UMOD: A Novel and Effective Urban Metro Origin-Destination Flow Prediction Method
- arxiv url: http://arxiv.org/abs/2409.04942v1
- Date: Sun, 8 Sep 2024 01:44:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 20:00:10.398671
- Title: UMOD: A Novel and Effective Urban Metro Origin-Destination Flow Prediction Method
- Title(参考訳): UMOD: 都市域の新規かつ効果的な原点推定フロー予測法
- Authors: Peng Xie, Minbo Ma, Bin Wang, Junbo Zhang, Tianrui Li,
- Abstract要約: 3つのコアモジュールからなる有効都市流予測法(UMOD)を提案する。
データ埋め込みモジュールは、生のODペアの入力を隠れた空間表現に投影する。
時間的および空間的関係モジュールは、時間的および空間的関係モジュールによって処理され、ペア内およびペア内OD-時間的依存関係の両方をキャプチャする。
- 参考スコア(独自算出の注目度): 18.026364560086954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of metro Origin-Destination (OD) flow is essential for the development of intelligent transportation systems and effective urban traffic management. Existing approaches typically either predict passenger outflow of departure stations or inflow of destination stations. However, we argue that travelers generally have clearly defined departure and arrival stations, making these OD pairs inherently interconnected. Consequently, considering OD pairs as a unified entity more accurately reflects actual metro travel patterns and allows for analyzing potential spatio-temporal correlations between different OD pairs. To address these challenges, we propose a novel and effective urban metro OD flow prediction method (UMOD), comprising three core modules: a data embedding module, a temporal relation module, and a spatial relation module. The data embedding module projects raw OD pair inputs into hidden space representations, which are subsequently processed by the temporal and spatial relation modules to capture both inter-pair and intra-pair spatio-temporal dependencies. Experimental results on two real-world urban metro OD flow datasets demonstrate that adopting the OD pairs perspective is critical for accurate metro OD flow prediction. Our method outperforms existing approaches, delivering superior predictive performance.
- Abstract(参考訳): 都市交通システムの構築と効果的な都市交通管理には,都市原位置推定(OD)の正確な予測が不可欠である。
既存のアプローチでは、乗客の出発駅の流出を予測したり、目的地駅の流入を予測するのが一般的である。
しかし、旅行者は一般的に出発点と到着点を明確に定義しており、これらのODペアは本質的に相互接続されている。
したがって、ODペアを統一エンティティとして考えることは、実際のメトロ旅行パターンをより正確に反映し、異なるODペア間の潜在的時空間相関を解析することができる。
これらの課題に対処するために,データ埋め込みモジュール,時間的関係モジュール,空間的関係モジュールの3つのコアモジュールからなる,新規で効果的な都市内ODフロー予測手法(UMOD)を提案する。
データ埋め込みモジュールは、生のODペアの入力を隠された空間表現に投影し、その後、時間的および空間的関係モジュールによって処理され、ペア間およびペア内の時空間依存関係の両方をキャプチャする。
2つの実世界の都市ODフローデータセットの実験結果から,ODペアの視点の採用が正確なODフロー予測に重要であることが示された。
我々の手法は既存の手法より優れ、予測性能が優れている。
関連論文リスト
- Harnessing LLMs for Cross-City OD Flow Prediction [5.6685153523382015]
大規模言語モデル(LLM)を用いた都市間原位置推定(OD)フロー予測の新しい手法を提案する。
我々のアプローチは,LLMの高度な意味理解と文脈学習能力を利用して,異なる特徴を持つ都市間のギャップを埋める。
我々の新しいフレームワークは、ソース都市からODトレーニングデータセットを収集し、LSMを指導し、ターゲット都市における宛先POIを予測し、予測された宛先POIに最も合う場所を特定する4つの主要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-09-05T23:04:28Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
急速な都市化は交通渋滞を著しくエスカレートさせ、高度な渋滞予測サービスの必要性を浮き彫りにした。
本稿では,CP-MoE(Congestion Prediction Mixture-of-Experts)を提案する。
CP-MoEは、旅行時間推定システムの精度と信頼性を向上させるため、DiDiに展開されている。
論文 参考訳(メタデータ) (2024-06-14T12:57:17Z) - ODMixer: Fine-grained Spatial-temporal MLP for Metro Origin-Destination Prediction [89.46685577447496]
具体的には、ODMixerは二重分岐構造を持ち、Channel Mixer、Multi-view Mixer、Bidirectional Trend Learnerが関与する。
論文 参考訳(メタデータ) (2024-04-24T08:46:25Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Parallel Multi-Graph Convolution Network For Metro Passenger Volume
Prediction [8.536743588315696]
本稿では,並列多グラフ畳み込みと双方向一方向Gated Recurrent Unit(PB-GRU)を重畳した深層学習モデルを提案する。
地下鉄の乗客の流れを実世界の2つのデータセットで分析した結果,モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-08-29T13:07:18Z) - Online Metro Origin-Destination Prediction via Heterogeneous Information
Aggregation [99.54200992904721]
我々は、ODとDOの進化パターンを共同で学習するために、HIAM(Heterogeneous Information Aggregation Machine)と呼ばれるニューラルネットワークモジュールを提案する。
ODモデリングブランチは、未完成な順序の潜在的な目的地を明示的に推定し、不完全OD行列の情報を補完する。
DOモデリングブランチは、DO行列を入力として、DOライダーシップの時空間分布をキャプチャする。
提案したHIAMに基づいて,将来のODおよびDOライダーを同時に予測する統合Seq2Seqネットワークを開発した。
論文 参考訳(メタデータ) (2021-07-02T10:11:51Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。