論文の概要: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
- arxiv url: http://arxiv.org/abs/2206.14928v1
- Date: Wed, 29 Jun 2022 22:19:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 14:41:42.934776
- Title: Manifold Interpolating Optimal-Transport Flows for Trajectory Inference
- Title(参考訳): 軌道推論のためのマニフォールド補間最適輸送流
- Authors: Guillaume Huguet, D.S. Magruder, Oluwadamilola Fasina, Alexander Tong,
Manik Kuchroo, Guy Wolf, Smita Krishnaswamy
- Abstract要約: 最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
- 参考スコア(独自算出の注目度): 64.94020639760026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here, we present a method called Manifold Interpolating Optimal-Transport
Flow (MIOFlow) that learns stochastic, continuous population dynamics from
static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic
models, manifold learning, and optimal transport by training neural ordinary
differential equations (Neural ODE) to interpolate between static population
snapshots as penalized by optimal transport with manifold ground distance.
Further, we ensure that the flow follows the geometry by operating in the
latent space of an autoencoder that we call a geodesic autoencoder (GAE). In
GAE the latent space distance between points is regularized to match a novel
multiscale geodesic distance on the data manifold that we define. We show that
this method is superior to normalizing flows, Schr\"odinger bridges and other
generative models that are designed to flow from noise to data in terms of
interpolating between populations. Theoretically, we link these trajectories
with dynamic optimal transport. We evaluate our method on simulated data with
bifurcations and merges, as well as scRNA-seq data from embryoid body
differentiation, and acute myeloid leukemia treatment.
- Abstract(参考訳): 本稿では,スポラジカル・タイムポイントで採取した静的スナップショットから,確率的,連続的な個体群動態を学習するManifold Interpolating Optimal-Transport Flow (MIOFlow)を提案する。
MIOFlowは、動的モデル、多様体学習、およびニューラルネットワーク常微分方程式(ニューラルODE)を訓練することで最適輸送を組み合わせ、静的集団スナップショット間の補間を行う。
さらに,ジオデシックオートエンコーダ (GAE) と呼ぶオートエンコーダの潜時空間を動作させることにより,フローが幾何に従っていることを保証する。
GAE において、点間の遅延空間距離は、我々が定義するデータ多様体上の新しいマルチスケール測地距離と一致するように正規化される。
本手法は, 個体群間の補間において, ノイズからデータへの流れを考慮に入れた, 流れの正規化, シュリンガーブリッジ, その他の生成モデルよりも優れていることを示す。
理論的には、これらの軌道を動的最適輸送と結びつける。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Flow Map Matching [15.520853806024943]
フローマップマッチングは、基礎となる常微分方程式の2時間フローマップを学習するアルゴリズムである。
フローマップマッチングは, 拡散法や補間法と比較して, サンプリングコストを大幅に削減した高品質なサンプルとなることを示す。
論文 参考訳(メタデータ) (2024-06-11T17:41:26Z) - Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging [3.8623569699070353]
軌道推論は、そのような観測から連続的な過程を再構築する挑戦を扱う。
ワッサーシュタイン空間に直交する連続平均化による点雲のB-スプライン近似法を提案する。
コンバージェンス保証を提供し、シミュレーションセルデータ上でテストすることで、我々の手法を厳格に評価する。
論文 参考訳(メタデータ) (2024-05-30T04:19:20Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Low-Rank Hankel Tensor Completion for Traffic Speed Estimation [7.346671461427793]
交通状態推定問題に対する純粋にデータ駆動型かつモデルフリーなソリューションを提案する。
このテンソル構造に低ランクな仮定を課すことで、大域的パターンと未知の複素局所力学の両方を近似することができる。
本研究では,合成シミュレーションデータと実世界の高分解能データの両方について数値実験を行い,提案モデルの有効性と優位性を実証した。
論文 参考訳(メタデータ) (2021-05-21T00:08:06Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
速度場データの不均一および動的パターンを学習するモデルを開発した。
複雑な多車間相互作用のNGSIMデータセットに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T17:45:46Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
歩行者等の軌道予測は,自律型エージェントの性能向上に不可欠である。
本稿では分割結合を利用した新しいハールウェーブレットに基づくブロック自己回帰モデルを提案する。
実世界の2つのデータセット上で、多種多様な正確な軌跡を生成するアプローチの利点について説明する。
論文 参考訳(メタデータ) (2020-09-21T13:57:10Z) - TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular
Dynamics [74.43710101147849]
本稿では,動的最適輸送を実現するために,分布間の連続経路を制御するTrjectoryNetを提案する。
単細胞RNAシークエンシング(scRNA-seq)技術から得られたデータにおける細胞動態の研究において、これが特に当てはまるかを示す。
論文 参考訳(メタデータ) (2020-02-09T21:00:38Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。