論文の概要: A foundation model enpowered by a multi-modal prompt engine for universal seismic geobody interpretation across surveys
- arxiv url: http://arxiv.org/abs/2409.04962v2
- Date: Sat, 14 Sep 2024 01:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 22:38:20.228217
- Title: A foundation model enpowered by a multi-modal prompt engine for universal seismic geobody interpretation across surveys
- Title(参考訳): マルチモーダル・プロンプトエンジンを応用した地震探査用基礎モデル
- Authors: Hang Gao, Xinming Wu, Luming Liang, Hanlin Sheng, Xu Si, Gao Hui, Yaxing Li,
- Abstract要約: 本研究では, 地震探査における地盤構造を解析するための基礎モデルを提案する。
このモデルは、事前訓練されたビジョンファウンデーションモデル(VFM)と洗練されたマルチモーダルプロンプトエンジンを統合している。
提案手法は地学データ解釈のための新しいパラダイムを確立し,他のタスクへの転送の可能性も広い。
- 参考スコア(独自算出の注目度): 13.150829303910385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seismic geobody interpretation is crucial for structural geology studies and various engineering applications. Existing deep learning methods show promise but lack support for multi-modal inputs and struggle to generalize to different geobody types or surveys. We introduce a promptable foundation model for interpreting any geobodies across seismic surveys. This model integrates a pre-trained vision foundation model (VFM) with a sophisticated multi-modal prompt engine. The VFM, pre-trained on massive natural images and fine-tuned on seismic data, provides robust feature extraction for cross-survey generalization. The prompt engine incorporates multi-modal prior information to iteratively refine geobody delineation. Extensive experiments demonstrate the model's superior accuracy, scalability from 2D to 3D, and generalizability to various geobody types, including those unseen during training. To our knowledge, this is the first highly scalable and versatile multi-modal foundation model capable of interpreting any geobodies across surveys while supporting real-time interactions. Our approach establishes a new paradigm for geoscientific data interpretation, with broad potential for transfer to other tasks.
- Abstract(参考訳): 地震の地体解釈は構造地質学研究や様々な工学的応用に不可欠である。
既存のディープラーニング手法は、将来性を示すが、マルチモーダル入力のサポートが欠如し、異なるジオボディタイプやサーベイへの一般化に苦慮している。
本研究では, 地震探査における地盤構造を解析するための基礎モデルを提案する。
このモデルは、事前訓練された視覚基盤モデル(VFM)と洗練されたマルチモーダルプロンプトエンジンを統合する。
VFMは、巨大な自然画像に基づいて事前訓練され、地震データに基づいて微調整され、クロスサーベイの一般化のための堅牢な特徴抽出を提供する。
プロンプトエンジンは、複数モーダル事前情報を反復的に微調整する。
大規模な実験では、モデルの優れた精度、2Dから3Dへのスケーラビリティ、および訓練中に見えないものを含む様々なジオボディタイプへの一般化性を示す。
我々の知る限り、これは、リアルタイムのインタラクションをサポートしながら、調査全体にわたる任意のジオボディーを解釈できる、スケーラブルで汎用的なマルチモーダル基盤モデルとしては、初めてのものです。
提案手法は地学データ解釈のための新しいパラダイムを確立し,他のタスクへの転送の可能性も広い。
関連論文リスト
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) は、様々なマルチモーダルタスクにおいて顕著な進歩を遂げている。
本稿では, VLGFMを網羅的にレビューし, この分野の最近の展開を要約し, 分析する。
論文 参考訳(メタデータ) (2024-06-13T17:57:30Z) - ImplicitTerrain: a Continuous Surface Model for Terrain Data Analysis [14.013976303831313]
ImplicitTerrainは、高解像度の地形を連続的に微分的にモデル化するための暗黙の神経表現(INR)アプローチである。
本実験では, 表面適合精度, 有効トポロジカル特徴抽出, 各種トポロジカル特徴抽出について検討した。
論文 参考訳(メタデータ) (2024-05-31T23:05:34Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
我々の新しいアプローチは、脳科学における神経可塑性の概念を活用する、ダイナミックワンフォーオール(DOFA)モデルを導入している。
このダイナミックなハイパーネットワークは、異なる波長に調整され、5つのセンサーのデータに基づいて1つの多目的トランスフォーマーを共同で訓練し、12の異なる地球観測タスクを遂行することを可能にする。
論文 参考訳(メタデータ) (2024-03-22T17:11:47Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
単一画像から幾何学的属性を推定するための新しい生成基盤モデルであるGeoWizardを紹介する。
拡散前処理の活用は,資源利用における一般化,詳細な保存,効率性を著しく向上させることが示唆された。
本稿では,様々なシーンの複雑なデータ分布を,個別のサブディストリビューションに分離する,シンプルかつ効果的な戦略を提案する。
論文 参考訳(メタデータ) (2024-03-18T17:50:41Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
そこで本稿は,IBM-NASAのPrithviによる地空間基盤モデルの性能評価を行い,地空間解析の重要課題である洪水浸水マッピングを支援する。
実験では、ベンチマークデータセットであるSen1Floods11を使用し、モデルの予測可能性、一般化可能性、転送可能性を評価する。
以上の結果から, 未確認領域におけるセグメンテーションにおけるPrithviモデルの性能上の優位性が示された。
論文 参考訳(メタデータ) (2023-09-25T19:50:47Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
ファンデーションモデル(FM)は、微調整、少数ショット、ゼロショット学習によって、幅広い下流タスクに適応することができる。
我々は,GeoAIのためのFMを開発する上で大きな課題の一つとして,地理空間的タスクのマルチモーダル性に対処することを提案する。
論文 参考訳(メタデータ) (2023-04-13T19:50:17Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
資源コストと炭素の影響を最小限に抑えた高効率基礎モデルを構築するための新しいパラダイムを提案する。
まず、複数のソースからコンパクトだが多様なデータセットを構築し、GeoPileと呼ぶ特徴の多様性を促進する。
次に,大規模なImageNet-22kモデルからの継続事前学習の可能性について検討し,多目的連続事前学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-09T07:39:02Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Seismic horizon detection with neural networks [62.997667081978825]
本稿では,複数の実地震立方体上での地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
本研究の主な貢献は,複数実地震立方体における地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
論文 参考訳(メタデータ) (2020-01-10T11:30:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。