A foundation model enpowered by a multi-modal prompt engine for universal seismic geobody interpretation across surveys
- URL: http://arxiv.org/abs/2409.04962v2
- Date: Sat, 14 Sep 2024 01:19:13 GMT
- Title: A foundation model enpowered by a multi-modal prompt engine for universal seismic geobody interpretation across surveys
- Authors: Hang Gao, Xinming Wu, Luming Liang, Hanlin Sheng, Xu Si, Gao Hui, Yaxing Li,
- Abstract summary: We introduce a promptable foundation model for interpreting any geobodies across seismic surveys.
The model integrates a pre-trained vision foundation model (VFM) with a sophisticated multi-modal prompt engine.
Our approach establishes a new paradigm for geoscientific data interpretation, with broad potential for transfer to other tasks.
- Score: 13.150829303910385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Seismic geobody interpretation is crucial for structural geology studies and various engineering applications. Existing deep learning methods show promise but lack support for multi-modal inputs and struggle to generalize to different geobody types or surveys. We introduce a promptable foundation model for interpreting any geobodies across seismic surveys. This model integrates a pre-trained vision foundation model (VFM) with a sophisticated multi-modal prompt engine. The VFM, pre-trained on massive natural images and fine-tuned on seismic data, provides robust feature extraction for cross-survey generalization. The prompt engine incorporates multi-modal prior information to iteratively refine geobody delineation. Extensive experiments demonstrate the model's superior accuracy, scalability from 2D to 3D, and generalizability to various geobody types, including those unseen during training. To our knowledge, this is the first highly scalable and versatile multi-modal foundation model capable of interpreting any geobodies across surveys while supporting real-time interactions. Our approach establishes a new paradigm for geoscientific data interpretation, with broad potential for transfer to other tasks.
Related papers
- Geological Everything Model 3D: A Promptable Foundation Model for Unified and Zero-Shot Subsurface Understanding [8.832957977030198]
Geological Everything Model 3D (GEM) is a unified generative architecture that reformulates tasks as prompt-conditioned inference.<n>GEM achieves zero-shot generalization across tasks with heterogeneous prompt types, without retraining for new tasks or data sources.<n>GEM demonstrates broad applicability across surveys and tasks, including Martian radar stratigraphy analysis, structural interpretation in subduction zones, full seismic stratigraphic interpretation, geobody segmentation, and property modeling.
arXiv Detail & Related papers (2025-07-01T04:14:13Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.
We propose a MLLM (OmniGeo) tailored to geospatial applications.
By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - GeoJEPA: Towards Eliminating Augmentation- and Sampling Bias in Multimodal Geospatial Learning [0.0]
We present GeoJEPA, a versatile multimodal fusion model for geospatial data built on the self-supervised Joint-Embedding Predictive Architecture.
We aim to eliminate the widely accepted augmentation- and sampling biases found in self-supervised geospatial representation learning.
The results are multimodal semantic representations of urban regions and map entities that we evaluate both quantitatively and qualitatively.
arXiv Detail & Related papers (2025-02-25T22:03:28Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.
Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.
To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - Self-Supervised Representation Learning for Geospatial Objects: A Survey [21.504978593542354]
Self-supervised learning (SSL) has garnered increasing attention for its ability to learn effective and generalizable representations directly from data without extensive labeled supervision.
This paper presents a survey of SSL techniques specifically applied to or developed for geospatial objects in three primary geometric vector types: Point, Polyline, and Polygon.
We examine the emerging trends in SSL for geospatial objects, particularly the gradual advancements towards geospatial foundation models.
arXiv Detail & Related papers (2024-08-22T05:28:22Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Towards Vision-Language Geo-Foundation Model: A Survey [65.70547895998541]
Vision-Language Foundation Models (VLFMs) have made remarkable progress on various multimodal tasks.
This paper thoroughly reviews VLGFMs, summarizing and analyzing recent developments in the field.
arXiv Detail & Related papers (2024-06-13T17:57:30Z) - ImplicitTerrain: a Continuous Surface Model for Terrain Data Analysis [14.013976303831313]
ImplicitTerrain is an implicit neural representation (INR) approach for modeling high-resolution terrain continuously and differentiably.
Our experiments demonstrate superior surface fitting accuracy, effective topological feature retrieval, and various topographical feature extraction.
arXiv Detail & Related papers (2024-05-31T23:05:34Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image [94.56927147492738]
We introduce GeoWizard, a new generative foundation model designed for estimating geometric attributes from single images.
We show that leveraging diffusion priors can markedly improve generalization, detail preservation, and efficiency in resource usage.
We propose a simple yet effective strategy to segregate the complex data distribution of various scenes into distinct sub-distributions.
arXiv Detail & Related papers (2024-03-18T17:50:41Z) - Assessment of a new GeoAI foundation model for flood inundation mapping [4.312965283062856]
This paper evaluates the performance of the first-of-its-kind geospatial foundation model, IBM-NASA's Prithvi, to support a crucial geospatial analysis task: flood inundation mapping.
A benchmark dataset, Sen1Floods11, is used in the experiments, and the models' predictability, generalizability, and transferability are evaluated.
Results show the good transferability of the Prithvi model, highlighting its performance advantages in segmenting flooded areas in previously unseen regions.
arXiv Detail & Related papers (2023-09-25T19:50:47Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
Foundations models (FMs) can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or zero-shot learning.
We propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks.
arXiv Detail & Related papers (2023-04-13T19:50:17Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Hyperbolic Graph Learning: A Comprehensive Review [56.53820115624101]
This survey paper provides a comprehensive review of the rapidly evolving field of Hyperbolic Graph Learning (HGL)<n>We systematically categorize and analyze existing methods dividing them into (1) hyperbolic graph embedding-based techniques, (2) graph neural network-based hyperbolic models, and (3) emerging paradigms.<n>We extensively discuss diverse applications of HGL across multiple domains, including recommender systems, knowledge graphs, bioinformatics, and other relevant scenarios.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Seismic horizon detection with neural networks [62.997667081978825]
This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
arXiv Detail & Related papers (2020-01-10T11:30:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.