Multi-V2X: A Large Scale Multi-modal Multi-penetration-rate Dataset for Cooperative Perception
- URL: http://arxiv.org/abs/2409.04980v1
- Date: Sun, 8 Sep 2024 05:22:00 GMT
- Title: Multi-V2X: A Large Scale Multi-modal Multi-penetration-rate Dataset for Cooperative Perception
- Authors: Rongsong Li, Xin Pei,
- Abstract summary: We introduce Multi-V2X, a large-scale, multi-modal, multi-penetration-rate dataset for V2X perception.
In total, our Multi-V2X dataset comprises 549k RGB frames, 146k LiDAR frames, and 4,219k annotated 3D bounding boxes.
The highest possible CAV penetration rate reaches 86.21%, with up to 31 agents in communication range.
- Score: 3.10770247120758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative perception through vehicle-to-everything (V2X) has garnered significant attention in recent years due to its potential to overcome occlusions and enhance long-distance perception. Great achievements have been made in both datasets and algorithms. However, existing real-world datasets are limited by the presence of few communicable agents, while synthetic datasets typically cover only vehicles. More importantly, the penetration rate of connected and autonomous vehicles (CAVs) , a critical factor for the deployment of cooperative perception technologies, has not been adequately addressed. To tackle these issues, we introduce Multi-V2X, a large-scale, multi-modal, multi-penetration-rate dataset for V2X perception. By co-simulating SUMO and CARLA, we equip a substantial number of cars and roadside units (RSUs) in simulated towns with sensor suites, and collect comprehensive sensing data. Datasets with specified CAV penetration rates can be obtained by masking some equipped cars as normal vehicles. In total, our Multi-V2X dataset comprises 549k RGB frames, 146k LiDAR frames, and 4,219k annotated 3D bounding boxes across six categories. The highest possible CAV penetration rate reaches 86.21%, with up to 31 agents in communication range, posing new challenges in selecting agents to collaborate with. We provide comprehensive benchmarks for cooperative 3D object detection tasks. Our data and code are available at https://github.com/RadetzkyLi/Multi-V2X .
Related papers
- WHALES: A Multi-agent Scheduling Dataset for Enhanced Cooperation in Autonomous Driving [54.365702251769456]
We present dataset with unprecedented average of 8.4 agents per driving sequence.
In addition to providing the largest number of agents and viewpoints among autonomous driving datasets, WHALES records agent behaviors.
We conduct experiments on agent scheduling task, where the ego agent selects one of multiple candidate agents to cooperate with.
arXiv Detail & Related papers (2024-11-20T14:12:34Z) - V2X-Real: a Largs-Scale Dataset for Vehicle-to-Everything Cooperative Perception [22.3955949838171]
We propose a dataset that has a mixture of multiple vehicles and smart infrastructure simultaneously to facilitate the V2X cooperative perception development.
V2X-Real is collected using two connected automated vehicles and two smart infrastructures.
The whole dataset contains 33K LiDAR frames and 171K camera data with over 1.2M annotated bounding boxes of 10 categories in very challenging urban scenarios.
arXiv Detail & Related papers (2024-03-24T06:30:02Z) - V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle
Cooperative Perception [49.7212681947463]
Vehicle-to-Vehicle (V2V) cooperative perception system has great potential to revolutionize the autonomous driving industry.
We present V2V4Real, the first large-scale real-world multi-modal dataset for V2V perception.
Our dataset covers a driving area of 410 km, comprising 20K LiDAR frames, 40K RGB frames, 240K annotated 3D bounding boxes for 5 classes, and HDMaps.
arXiv Detail & Related papers (2023-03-14T02:49:20Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
arXiv Detail & Related papers (2022-12-20T15:26:39Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
Vehicle-to-Everything (V2X) network has enabled collaborative perception in autonomous driving.
The lack of datasets has severely blocked the development of collaborative perception algorithms.
We release DOLPHINS: dataset for cOllaborative Perception enabled Harmonious and INterconnected Self-driving.
arXiv Detail & Related papers (2022-07-15T17:07:07Z) - DAIR-V2X: A Large-Scale Dataset for Vehicle-Infrastructure Cooperative
3D Object Detection [8.681912341444901]
DAIR-V2X is the first large-scale, multi-modality, multi-view dataset from real scenarios for Vehicle-Infrastructure Cooperative Autonomous Driving.
DAIR-V2X comprises 71254 LiDAR frames and 71254 Camera frames, and all frames are captured from real scenes with 3D annotations.
arXiv Detail & Related papers (2022-04-12T07:13:33Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - V2X-Sim: A Virtual Collaborative Perception Dataset for Autonomous
Driving [26.961213523096948]
Vehicle-to-everything (V2X) denotes the collaboration between a vehicle and any entity in its surrounding.
We present the V2X-Sim dataset, the first public large-scale collaborative perception dataset in autonomous driving.
arXiv Detail & Related papers (2022-02-17T05:14:02Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.