Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X Collaboration
- URL: http://arxiv.org/abs/2502.14156v1
- Date: Wed, 19 Feb 2025 23:53:00 GMT
- Title: Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X Collaboration
- Authors: Katie Z Luo, Minh-Quan Dao, Zhenzhen Liu, Mark Campbell, Wei-Lun Chao, Kilian Q. Weinberger, Ezio Malis, Vincent Fremont, Bharath Hariharan, Mao Shan, Stewart Worrall, Julie Stephany Berrio Perez,
- Abstract summary: Vehicle-to-everything (V2X) collaborative perception has emerged as a promising solution to address the limitations of single-vehicle perception systems.
To address these gaps, we present Mixed Signals, a comprehensive V2X dataset featuring 45.1k point clouds and 240.6k bounding boxes.
Our dataset provides precisely aligned point clouds and bounding box annotations across 10 classes, ensuring reliable data for perception training.
- Score: 56.75198775820637
- License:
- Abstract: Vehicle-to-everything (V2X) collaborative perception has emerged as a promising solution to address the limitations of single-vehicle perception systems. However, existing V2X datasets are limited in scope, diversity, and quality. To address these gaps, we present Mixed Signals, a comprehensive V2X dataset featuring 45.1k point clouds and 240.6k bounding boxes collected from three connected autonomous vehicles (CAVs) equipped with two different types of LiDAR sensors, plus a roadside unit with dual LiDARs. Our dataset provides precisely aligned point clouds and bounding box annotations across 10 classes, ensuring reliable data for perception training. We provide detailed statistical analysis on the quality of our dataset and extensively benchmark existing V2X methods on it. Mixed Signals V2X Dataset is one of the highest quality, large-scale datasets publicly available for V2X perception research. Details on the website https://mixedsignalsdataset.cs.cornell.edu/.
Related papers
- Multi-V2X: A Large Scale Multi-modal Multi-penetration-rate Dataset for Cooperative Perception [3.10770247120758]
We introduce Multi-V2X, a large-scale, multi-modal, multi-penetration-rate dataset for V2X perception.
In total, our Multi-V2X dataset comprises 549k RGB frames, 146k LiDAR frames, and 4,219k annotated 3D bounding boxes.
The highest possible CAV penetration rate reaches 86.21%, with up to 31 agents in communication range.
arXiv Detail & Related papers (2024-09-08T05:22:00Z) - Conformal Trajectory Prediction with Multi-View Data Integration in Cooperative Driving [4.628774934971078]
Current research on trajectory prediction primarily relies on data collected by onboard sensors of an ego vehicle.
We introduce V2INet, a novel trajectory prediction framework designed to model multi-view data by extending existing single-view models.
Our results demonstrate superior performance in terms of Final Displacement Error (FDE) and Miss Rate (MR) using a single GPU.
arXiv Detail & Related papers (2024-08-01T08:32:03Z) - V2X-Real: a Large-Scale Dataset for Vehicle-to-Everything Cooperative Perception [22.3955949838171]
We present V2X-Real, a large-scale dataset that includes a mixture of multiple vehicles and smart infrastructure.
Our dataset contains 33K LiDAR frames and 171K camera data with over 1.2M annotated bounding boxes of 10 categories in very challenging urban scenarios.
arXiv Detail & Related papers (2024-03-24T06:30:02Z) - V2V4Real: A Real-world Large-scale Dataset for Vehicle-to-Vehicle
Cooperative Perception [49.7212681947463]
Vehicle-to-Vehicle (V2V) cooperative perception system has great potential to revolutionize the autonomous driving industry.
We present V2V4Real, the first large-scale real-world multi-modal dataset for V2V perception.
Our dataset covers a driving area of 410 km, comprising 20K LiDAR frames, 40K RGB frames, 240K annotated 3D bounding boxes for 5 classes, and HDMaps.
arXiv Detail & Related papers (2023-03-14T02:49:20Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
arXiv Detail & Related papers (2022-12-20T15:26:39Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
Vehicle-to-Everything (V2X) network has enabled collaborative perception in autonomous driving.
The lack of datasets has severely blocked the development of collaborative perception algorithms.
We release DOLPHINS: dataset for cOllaborative Perception enabled Harmonious and INterconnected Self-driving.
arXiv Detail & Related papers (2022-07-15T17:07:07Z) - V2X-ViT: Vehicle-to-Everything Cooperative Perception with Vision
Transformer [58.71845618090022]
We build a holistic attention model, namely V2X-ViT, to fuse information across on-road agents.
V2X-ViT consists of alternating layers of heterogeneous multi-agent self-attention and multi-scale window self-attention.
To validate our approach, we create a large-scale V2X perception dataset.
arXiv Detail & Related papers (2022-03-20T20:18:25Z) - Multiview Detection with Feature Perspective Transformation [59.34619548026885]
We propose a novel multiview detection system, MVDet.
We take an anchor-free approach to aggregate multiview information by projecting feature maps onto the ground plane.
Our entire model is end-to-end learnable and achieves 88.2% MODA on the standard Wildtrack dataset.
arXiv Detail & Related papers (2020-07-14T17:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.