論文の概要: 2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
- arxiv url: http://arxiv.org/abs/2409.04982v1
- Date: Sun, 8 Sep 2024 05:35:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 19:50:12.199329
- Title: 2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
- Title(参考訳): 2DSig-Detect:2D信号を用いた画像データの異常検出のための半教師付きフレームワーク
- Authors: Xinheng Xie, Kureha Yamaguchi, Margaux Leblanc, Simon Malzard, Varun Chhabra, Victoria Nockles, Yue Wu,
- Abstract要約: 本稿では,2DSig-Detectと呼ばれる画像における異常検出のための新しい手法を提案する。
画像中の対向摂動の存在を検出するために,優れた性能と時間の短縮が示される。
- 参考スコア(独自算出の注目度): 2.6642754249961103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of machine learning technologies raises questions about the security of machine learning models, with respect to both training-time (poisoning) and test-time (evasion, impersonation, and inversion) attacks. Models performing image-related tasks, e.g. detection, and classification, are vulnerable to adversarial attacks that can degrade their performance and produce undesirable outcomes. This paper introduces a novel technique for anomaly detection in images called 2DSig-Detect, which uses a 2D-signature-embedded semi-supervised framework rooted in rough path theory. We demonstrate our method in adversarial settings for training-time and test-time attacks, and benchmark our framework against other state of the art methods. Using 2DSig-Detect for anomaly detection, we show both superior performance and a reduction in the computation time to detect the presence of adversarial perturbations in images.
- Abstract(参考訳): 機械学習技術の急速な進歩は、トレーニング時間(解雇)とテスト時間(回避、偽装、反転)の攻撃に関して、機械学習モデルのセキュリティに関する疑問を提起する。
画像関連タスクを実行するモデル、例えば、検出や分類は、パフォーマンスを低下させ、望ましくない結果をもたらす可能性のある敵攻撃に対して脆弱である。
本稿では,2次元信号埋め込み型半教師付きフレームワークを用いた2DSig-Detectと呼ばれる画像の異常検出手法を提案する。
我々は,本手法を訓練時間およびテスト時間攻撃の対角的設定で実証し,他の最先端手法と比較してフレームワークをベンチマークする。
異常検出に2DSig-Detectを用いると,画像中の対向摂動の存在を検出するために,優れた性能と計算時間の短縮が示される。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - 2D-Malafide: Adversarial Attacks Against Face Deepfake Detection Systems [8.717726409183175]
2D-Malafideは, 顔深度検出システムに悪影響を与えるように設計された, 新規で軽量な対向攻撃である。
従来の加法ノイズアプローチとは異なり、2D-マラフィドは少数のフィルタ係数を最適化し、頑健な逆方向の摂動を生成する。
FaceForensics++データセットを使用して実施された実験では、2D-Malafideがホワイトボックスとブラックボックスの設定の両方で検出性能を著しく低下させることが示された。
論文 参考訳(メタデータ) (2024-08-26T09:41:40Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
ディープニューラルネットワーク(DNN)に基づく2次元物体検出のための新しいイントロスペクションソリューションを提案する。
KITTIとBDDのデータセットで評価された1段階および2段階のオブジェクト検出器を用いて,2次元オブジェクト検出におけるエラー検出のためのSOTAイントロスペクション機構を実装した。
性能評価の結果,提案手法はSOTA法より優れており,BDDデータセットのエラー率を9%から17%まで絶対的に削減できることがわかった。
論文 参考訳(メタデータ) (2024-03-02T10:56:14Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Detecting Adversaries, yet Faltering to Noise? Leveraging Conditional
Variational AutoEncoders for Adversary Detection in the Presence of Noisy
Images [0.7734726150561086]
条件変分オートエンコーダ(CVAE)は、知覚不能な画像摂動を検出するのに驚くほど優れている。
画像分類ネットワーク上での敵攻撃を検出するために,CVAEを効果的に利用する方法を示す。
論文 参考訳(メタデータ) (2021-11-28T20:36:27Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
本稿では,敵物体をホスト車両の上に配置することで,マルチセンサ検出の実用的感受性を示す。
実験の結果, 攻撃が成功した原因は主に画像の特徴が損なわれやすいことが判明した。
よりロバストなマルチモーダル知覚システムに向けて,特徴分断を伴う敵対的訓練が,このような攻撃に対するロバスト性を大幅に高めることを示す。
論文 参考訳(メタデータ) (2021-01-17T21:15:34Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。