Some Results on Neural Network Stability, Consistency, and Convergence: Insights into Non-IID Data, High-Dimensional Settings, and Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2409.05030v2
- Date: Tue, 10 Sep 2024 14:32:23 GMT
- Title: Some Results on Neural Network Stability, Consistency, and Convergence: Insights into Non-IID Data, High-Dimensional Settings, and Physics-Informed Neural Networks
- Authors: Ronald Katende, Henry Kasumba, Godwin Kakuba, John M. Mango,
- Abstract summary: This paper addresses critical challenges in machine learning, particularly under non-IID data distribution conditions.
We provide results on uniform stability networks with dynamic learning rates.
These results fill significant gaps in understanding model behavior in noisy environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses critical challenges in machine learning, particularly the stability, consistency, and convergence of neural networks under non-IID data, distribution shifts, and high-dimensional settings. We provide new theoretical results on uniform stability for neural networks with dynamic learning rates in non-convex settings. Further, we establish consistency bounds for federated learning models in non-Euclidean spaces, accounting for distribution shifts and curvature effects. For Physics-Informed Neural Networks (PINNs), we derive stability, consistency, and convergence guarantees for solving Partial Differential Equations (PDEs) in noisy environments. These results fill significant gaps in understanding model behavior in complex, non-ideal conditions, paving the way for more robust and reliable machine learning applications.
Related papers
- Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
This paper introduces novel residual-based architectures, designed to enhance stability and accuracy in physics-informed neural networks (PINNs)
The architectures augment traditional neural networks by incorporating residual connections, which facilitate smoother weight updates and improve backpropagation efficiency.
The Squared Residual Network, in particular, exhibits robust performance, achieving enhanced stability and accuracy compared to conventional neural networks.
arXiv Detail & Related papers (2024-07-10T05:20:43Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
We propose the Multi-Scale Physics-Constrained Neural Network (MSPCNN)
MSPCNN offers a novel methodology for incorporating data with different levels of fidelity into a unified latent space.
Unlike conventional methods, MSPCNN also manages to employ multi-fidelity data to train the predictive model.
arXiv Detail & Related papers (2024-02-03T05:05:26Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - DAE-PINN: A Physics-Informed Neural Network Model for Simulating
Differential-Algebraic Equations with Application to Power Networks [8.66798555194688]
We develop DAE-PINN, the first effective deep-learning framework for learning and simulating the solution trajectories of nonlinear differential-algebraic equations.
Our framework enforces the neural network to satisfy the DAEs as (approximate) hard constraints using a penalty-based method.
We showcase the effectiveness and accuracy of DAE-PINN by learning and simulating the solution trajectories of a three-bus power network.
arXiv Detail & Related papers (2021-09-09T14:30:28Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.