Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks
- URL: http://arxiv.org/abs/2410.04708v1
- Date: Mon, 7 Oct 2024 02:57:26 GMT
- Title: Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks
- Authors: Ankur Mali, Tommaso Salvatori, Alexander Ororbia,
- Abstract summary: Energy-based learning algorithms, such as predictive coding (PC), have garnered significant attention in the machine learning community.
We rigorously analyze the stability, robustness, and convergence of PC through the lens of dynamical systems theory.
- Score: 60.3634789164648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy-based learning algorithms, such as predictive coding (PC), have garnered significant attention in the machine learning community due to their theoretical properties, such as local operations and biologically plausible mechanisms for error correction. In this work, we rigorously analyze the stability, robustness, and convergence of PC through the lens of dynamical systems theory. We show that, first, PC is Lyapunov stable under mild assumptions on its loss and residual energy functions, which implies intrinsic robustness to small random perturbations due to its well-defined energy-minimizing dynamics. Second, we formally establish that the PC updates approximate quasi-Newton methods by incorporating higher-order curvature information, which makes them more stable and able to converge with fewer iterations compared to models trained via backpropagation (BP). Furthermore, using this dynamical framework, we provide new theoretical bounds on the similarity between PC and other algorithms, i.e., BP and target propagation (TP), by precisely characterizing the role of higher-order derivatives. These bounds, derived through detailed analysis of the Hessian structures, show that PC is significantly closer to quasi-Newton updates than TP, providing a deeper understanding of the stability and efficiency of PC compared to conventional learning methods.
Related papers
- Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
We develop a dynamic learning rate algorithm that integrates exponential decay and advanced anti-overfitting strategies.
We prove that the superlevel sets of the loss function, as influenced by our adaptive learning rate, are always connected.
arXiv Detail & Related papers (2024-09-25T09:27:17Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
Transformer-based models have demonstrated exceptional performance across diverse domains.
Little is known about how they operate or what are their expected dynamics.
We use methods for the study of asymmetric Hopfield networks in nonequilibrium regimes.
arXiv Detail & Related papers (2024-06-11T13:29:34Z) - Residual-based attention and connection to information bottleneck theory
in PINNs [0.393259574660092]
Physics-informed neural networks (PINNs) have seen a surge of interest in recent years.
We propose an efficient, gradient-less weighting scheme for PINNs, that accelerates the convergence of dynamic or static systems.
arXiv Detail & Related papers (2023-07-01T16:29:55Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - A Theoretical Framework for Inference and Learning in Predictive Coding
Networks [41.58529335439799]
Predictive coding (PC) is an influential theory in computational neuroscience.
We provide a comprehensive theoretical analysis of the properties of PCNs trained with prospective configuration.
arXiv Detail & Related papers (2022-07-21T04:17:55Z) - Controlling the Complexity and Lipschitz Constant improves polynomial
nets [55.121200972539114]
We derive new complexity bounds for the set of Coupled CP-Decomposition (CCP) and Nested Coupled CP-decomposition (NCP) models of Polynomial Nets.
We propose a principled regularization scheme that we evaluate experimentally in six datasets and show that it improves the accuracy as well as the robustness of the models to adversarial perturbations.
arXiv Detail & Related papers (2022-02-10T14:54:29Z) - A Theoretical Framework for Target Propagation [75.52598682467817]
We analyze target propagation (TP), a popular but not yet fully understood alternative to backpropagation (BP)
Our theory shows that TP is closely related to Gauss-Newton optimization and thus substantially differs from BP.
We provide a first solution to this problem through a novel reconstruction loss that improves feedback weight training.
arXiv Detail & Related papers (2020-06-25T12:07:06Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
Principal component analysis (PCA) is a widely used dimension reduction technique in machine learning and statistics.
Various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis.
We present thresholding as a provably accurate, time, approximation algorithm for the SPCA problem.
arXiv Detail & Related papers (2020-06-23T04:25:36Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.