Low Latency Transformer Inference on FPGAs for Physics Applications with hls4ml
- URL: http://arxiv.org/abs/2409.05207v1
- Date: Sun, 8 Sep 2024 19:50:25 GMT
- Title: Low Latency Transformer Inference on FPGAs for Physics Applications with hls4ml
- Authors: Zhixing Jiang, Dennis Yin, Yihui Chen, Elham E Khoda, Scott Hauck, Shih-Chieh Hsu, Ekaterina Govorkova, Philip Harris, Vladimir Loncar, Eric A. Moreno,
- Abstract summary: This study presents an efficient implementation of transformer architectures in Field-Programmable Gate Arrays(FPGAs) using hls4ml.
Their deployment on VU13P FPGA chip achieved less than 2us, demonstrating the potential for real-time applications.
- Score: 2.6892725687961394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents an efficient implementation of transformer architectures in Field-Programmable Gate Arrays(FPGAs) using hls4ml. We demonstrate the strategy for implementing the multi-head attention, softmax, and normalization layer and evaluate three distinct models. Their deployment on VU13P FPGA chip achieved latency less than 2us, demonstrating the potential for real-time applications. HLS4ML compatibility with any TensorFlow-built transformer model further enhances the scalability and applicability of this work. Index Terms: FPGAs, machine learning, transformers, high energy physics, LIGO
Related papers
- Ultra Fast Transformers on FPGAs for Particle Physics Experiments [2.666074491398626]
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA)
We have implemented critical components of a transformer model, such as multi-head attention and softmax layers.
We recorded latency under 2 $mu$s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at CERN.
arXiv Detail & Related papers (2024-02-01T22:32:39Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
arXiv Detail & Related papers (2023-12-23T04:27:06Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - Learning a Fourier Transform for Linear Relative Positional Encodings in Transformers [71.32827362323205]
We propose a new class of linear Transformers calledLearner-Transformers (Learners)
They incorporate a wide range of relative positional encoding mechanisms (RPEs)
These include regular RPE techniques applied for sequential data, as well as novel RPEs operating on geometric data embedded in higher-dimensional Euclidean spaces.
arXiv Detail & Related papers (2023-02-03T18:57:17Z) - Your Transformer May Not be as Powerful as You Expect [88.11364619182773]
We mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions.
We present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is.
We develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions.
arXiv Detail & Related papers (2022-05-26T14:51:30Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - VAQF: Fully Automatic Software-hardware Co-design Framework for Low-bit
Vision Transformer [121.85581713299918]
We propose VAQF, a framework that builds inference accelerators on FPGA platforms for quantized Vision Transformers (ViTs)
Given the model structure and the desired frame rate, VAQF will automatically output the required quantization precision for activations.
This is the first time quantization has been incorporated into ViT acceleration on FPGAs.
arXiv Detail & Related papers (2022-01-17T20:27:52Z) - FTRANS: Energy-Efficient Acceleration of Transformers using FPGA [11.032972017827248]
We propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations.
Our framework significantly reduces the model size of NLP models by up to 16 times.
Our FPGA design achieves 27.07x and 81x improvement in performance and energy efficiency compared to CPU, and up to 8.80x improvement in energy efficiency compared to GPU.
arXiv Detail & Related papers (2020-07-16T18:58:31Z) - Fast inference of Boosted Decision Trees in FPGAs for particle physics [11.99846367249951]
We describe the implementation of Boosted Decision Trees in the hls4ml library.
Thanks to its fully on-chip implementation, hls4ml performs inference of Boosted Decision Tree models with extremely low latency.
This solution is suitable for FPGA-based real-time processing, such as in the Level-1 Trigger system of a collider experiment.
arXiv Detail & Related papers (2020-02-05T12:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.