Comparison of Two Augmentation Methods in Improving Detection Accuracy of Hemarthrosis
- URL: http://arxiv.org/abs/2409.05225v2
- Date: Wed, 18 Sep 2024 15:17:43 GMT
- Title: Comparison of Two Augmentation Methods in Improving Detection Accuracy of Hemarthrosis
- Authors: Qianyu Fan,
- Abstract summary: This research investigated whether introducing augmented data by data synthesis or traditional augmentation techniques can improve model accuracy.
Model testing performance was investigated using EffientNet-B4 to recognize "blood" images with two augmentation methods.
Two augmentation methods, data synthesis and traditional augmentation techniques, both can improve accuracy to a certain extent to help to diagnose rare diseases.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the increase of computing power, machine learning models in medical imaging have been introduced to help in rending medical diagnosis and inspection, like hemophilia, a rare disorder in which blood cannot clot normally. Often, one of the bottlenecks of detecting hemophilia is the lack of data available to train the algorithm to increase the accuracy. As a possible solution, this research investigated whether introducing augmented data by data synthesis or traditional augmentation techniques can improve model accuracy, helping to diagnose the diseases. To tackle this research, features of ultrasound images were extracted by the pre-trained VGG-16, and similarities were compared by cosine similarity measure based on extracted features in different distributions among real images, synthetic images, and augmentation images (Real vs. Real, Syn vs. Syn, Real vs. Different Batches of Syn, Real vs. Augmentation Techniques). Model testing performance was investigated using EffientNet-B4 to recognize "blood" images with two augmentation methods. In addition, a gradient-weighted class activation mapping (Grad-CAM) visualization was used to interpret the unexpected results like loss of accuracy. Synthetic and real images do not show high similarity, with a mean similarity score of 0.4737. Synthetic batch 1 dataset and images by horizontal flip are more similar to the original images. Classic augmentation techniques and data synthesis can improve model accuracy, and data by traditional augmentation techniques have a better performance than synthetic data. In addition, the Grad-CAM heatmap figured out the loss of accuracy is due to a shift in the domain. Overall, this research found that two augmentation methods, data synthesis and traditional augmentation techniques, both can improve accuracy to a certain extent to help to diagnose rare diseases.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Merging synthetic and real embryo data for advanced AI predictions [69.07284335967019]
We train two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages.
These were combined with real images to train classification models for embryo cell stage prediction.
Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data.
arXiv Detail & Related papers (2024-12-02T08:24:49Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Transesophageal Echocardiography Generation using Anatomical Models [0.5679566039341877]
We develop a pipeline to generate synthetic TEE images and corresponding semantic labels.
For the pipeline's unpaired image-to-image (I2I) translation section, we explore two generative methods.
We achieve a dice score improvement of up to 10% when we augment datasets with our synthetic images.
arXiv Detail & Related papers (2024-10-09T11:20:28Z) - Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging [5.1358645354733765]
This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images.
We developed a robust library model for real-time anomaly detection, allowing for efficient comparison of incoming images.
We fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images.
arXiv Detail & Related papers (2024-08-15T23:46:37Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Bi-parametric prostate MR image synthesis using pathology and
sequence-conditioned stable diffusion [3.290987481767681]
We propose an image synthesis mechanism for multi-sequence prostate MR images conditioned on text.
We generate paired bi-parametric images conditioned on images conditioned on paired data.
We validate our method using 2D image slices from real suspected prostate cancer patients.
arXiv Detail & Related papers (2023-03-03T17:24:39Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - FedMed-ATL: Misaligned Unpaired Brain Image Synthesis via Affine
Transform Loss [58.58979566599889]
We propose a novel self-supervised learning (FedMed) for brain image synthesis.
An affine transform loss (ATL) was formulated to make use of severely distorted images without violating privacy legislation.
The proposed method demonstrates advanced performance in both the quality of synthesized results under a severely misaligned and unpaired data setting.
arXiv Detail & Related papers (2022-01-29T13:45:39Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
Synthetic databases with annotated pathologies could provide the required amounts of training data.
We train different image-to-image translation models to synthesize magnetic resonance images of brain volumes with and without stroke lesions.
We show that for a small database of only 10 or 50 clinical cases, synthetic data augmentation yields significant improvement.
arXiv Detail & Related papers (2020-10-05T09:12:28Z) - Data Augmentation for Histopathological Images Based on
Gaussian-Laplacian Pyramid Blending [59.91656519028334]
Data imbalance is a major problem that affects several machine learning (ML) algorithms.
In this paper, we propose a novel approach capable of not only augmenting HI dataset but also distributing the inter-patient variability.
Experimental results on the BreakHis dataset have shown promising gains vis-a-vis the majority of DA techniques presented in the literature.
arXiv Detail & Related papers (2020-01-31T22:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.