Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging
- URL: http://arxiv.org/abs/2408.08456v1
- Date: Thu, 15 Aug 2024 23:46:37 GMT
- Title: Efficient Data-Sketches and Fine-Tuning for Early Detection of Distributional Drift in Medical Imaging
- Authors: Yusen Wu, Hao Chen, Alex Pissinou Makki, Phuong Nguyen, Yelena Yesha,
- Abstract summary: This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images.
We developed a robust library model for real-time anomaly detection, allowing for efficient comparison of incoming images.
We fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images.
- Score: 5.1358645354733765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributional drift detection is important in medical applications as it helps ensure the accuracy and reliability of models by identifying changes in the underlying data distribution that could affect diagnostic or treatment decisions. However, current methods have limitations in detecting drift; for example, the inclusion of abnormal datasets can lead to unfair comparisons. This paper presents an accurate and sensitive approach to detect distributional drift in CT-scan medical images by leveraging data-sketching and fine-tuning techniques. We developed a robust baseline library model for real-time anomaly detection, allowing for efficient comparison of incoming images and identification of anomalies. Additionally, we fine-tuned a vision transformer pre-trained model to extract relevant features using breast cancer images as an example, significantly enhancing model accuracy to 99.11\%. Combining with data-sketches and fine-tuning, our feature extraction evaluation demonstrated that cosine similarity scores between similar datasets provide greater improvements, from around 50\% increased to 100\%. Finally, the sensitivity evaluation shows that our solutions are highly sensitive to even 1\% salt-and-pepper and speckle noise, and it is not sensitive to lighting noise (e.g., lighting conditions have no impact on data drift). The proposed methods offer a scalable and reliable solution for maintaining the accuracy of diagnostic models in dynamic clinical environments.
Related papers
- Out-of-Distribution Detection and Data Drift Monitoring using
Statistical Process Control [1.2196109054410231]
Machine learning (ML) methods often fail with data that deviates from their training distribution.
This is a significant concern for ML-enabled devices in clinical settings, where data drift may cause unexpected performance that jeopardizes patient safety.
We propose a ML-enabled Statistical Process Control (SPC) framework for out-of-distribution detection and drift monitoring.
arXiv Detail & Related papers (2024-02-12T22:10:06Z) - AnoDODE: Anomaly Detection with Diffusion ODE [0.0]
Anomaly detection is the process of identifying atypical data samples that significantly deviate from the majority of the dataset.
We propose a new anomaly detection method based on diffusion ODEs by estimating the density of features extracted from medical images.
Our proposed method not only identifie anomalies but also provides interpretability at both the image and pixel levels.
arXiv Detail & Related papers (2023-10-10T08:44:47Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Quantifying the effect of X-ray scattering for data generation in real-time defect detection [1.124958340749622]
In-line detection requires highly accurate, robust, and fast algorithms.
DCNNs satisfy these requirements when a large amount of labeled data is available.
X-ray scattering is known to be computationally expensive to simulate.
arXiv Detail & Related papers (2023-05-22T08:29:43Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Efficient remedies for outlier detection with variational autoencoders [8.80692072928023]
Likelihoods computed by deep generative models are a candidate metric for outlier detection with unlabeled data.
We show that a theoretically-grounded correction readily ameliorates a key bias with VAE likelihood estimates.
We also show that the variance of the likelihoods computed over an ensemble of VAEs also enables robust outlier detection.
arXiv Detail & Related papers (2021-08-19T16:00:58Z) - Dealing with Distribution Mismatch in Semi-supervised Deep Learning for
Covid-19 Detection Using Chest X-ray Images: A Novel Approach Using Feature
Densities [0.6882042556551609]
Semi-supervised deep learning is an attractive alternative to large labelled datasets.
In real-world usage settings, an unlabelled dataset might present a different distribution than the labelled dataset.
This results in a distribution mismatch between the unlabelled and labelled datasets.
arXiv Detail & Related papers (2021-08-17T00:35:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.