論文の概要: Towards Distributed Quantum Error Correction for Distributed Quantum Computing
- arxiv url: http://arxiv.org/abs/2409.05244v1
- Date: Sun, 8 Sep 2024 23:10:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 16:22:22.968536
- Title: Towards Distributed Quantum Error Correction for Distributed Quantum Computing
- Title(参考訳): 分散量子コンピューティングのための分散量子エラー補正に向けて
- Authors: Shahram Babaie, Chunming Qiao,
- Abstract要約: 3つの量子処理ユニット(QPU)に属する3つの物理量子ビットを用いて論理量子ビットを形成する、新しい量子ビットベースの分散量子誤り補正(DQEC)アーキテクチャを提案する。
本稿では,3つのQPUが協調して1ビットフリップと位相フリップの誤差を適切に解決できる量子状態を生成する方法について述べる。
提案アーキテクチャの機能的正しさは,Qiskitツールと安定化器ジェネレータを用いて評価する。
- 参考スコア(独自算出の注目度): 15.824983694947573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing as a promising technology can utilize stochastic solutions instead of deterministic approaches for complicated scenarios for which classical computing is inefficient, provided that both the concerns of the error-prone nature of qubits and the limitation of the number of qubits are addressed carefully. In order to address both concerns, a new qubit-based Distributed Quantum Error Correction (DQEC) architecture is proposed in which three physical qubits residing on three Quantum Processing Units (QPU) are used to form a logical qubit. This paper illustrates how three QPUs collaboratively generate a joint quantum state in which single bit-flip and phase-flip errors can be properly resolved. By reducing the number of qubits required to form a logical qubit in the proposed architecture, each QPU with its limited number of physical qubits can accommodate more logical qubits than when it has to devote its three physical qubits for each logical qubit. The functional correctness of the proposed architecture is evaluated through the Qiskit tool and stabilizer generators. Moreover, the fidelity of input and output quantum states, the complexity of the proposed designs, and the dependency between error probability and correctness of the proposed architecture are analyzed to prove its effectiveness.
- Abstract(参考訳): 量子コンピューティングを有望な技術とする量子コンピューティングは、古典的計算が非効率な複雑なシナリオに対して決定論的アプローチではなく確率論的手法を利用することができる。
どちらの問題にも対処するため,3つの量子処理ユニット(QPU)にまたがる3つの物理量子ビットを用いて論理量子ビットを形成する,新しい量子ビットベースの分散量子誤差補正(DQEC)アーキテクチャを提案する。
本稿では,3つのQPUが協調して1ビットフリップと位相フリップの誤差を適切に解決できる量子状態を生成する方法について述べる。
提案したアーキテクチャでは、論理量子ビットを形成するために必要な量子ビットの数を減らすことで、各QPUの物理量子ビット数は、各論理量子ビットに対して3つの物理量子ビットを割り当てる場合よりも、より論理量子ビットに対応することができる。
提案アーキテクチャの機能的正しさは,Qiskitツールと安定化器ジェネレータを用いて評価する。
さらに,入力および出力量子状態の忠実度,提案設計の複雑さ,および提案アーキテクチャの誤り確率と正しさの依存性を分析し,その妥当性を検証した。
関連論文リスト
- Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
量子コンピュータは難解な問題を解く可能性がある。
このポテンシャルを利用するための重要な要素の1つは、多値系(qudit)のために量子状態を効率的に準備する能力である。
本稿では,混合次元系に着目した量子状態生成法について検討する。
論文 参考訳(メタデータ) (2024-06-05T18:00:01Z) - Enabling Full-Stack Quantum Computing with Changeable Error-Corrected
Qubits [14.770636234849444]
我々は、変更可能な論理量子ビットに基づくFTQCの大規模設計空間を探索するために、CECQを提案する。
様々な量子プログラムの実験は、CECQの有効性を示す。
論文 参考訳(メタデータ) (2023-05-11T18:14:49Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - Quantum error correction with silicon spin qubits [0.0]
大規模量子コンピュータは、脆弱な量子情報を保護するために量子エラー補正に依存する。
シリコンベースの量子ビットの最近の進歩により、高品質な1と2の量子ビットシステムの実装が可能になった。
ここでは、シリコン中の3量子位相補正符号を示し、符号化された3量子状態は、3量子状態のうちの1つの位相フリップ誤差に対して保護される。
論文 参考訳(メタデータ) (2022-01-21T07:59:49Z) - Hierarchical Qubit Maps and Hierarchical Quantum Error Correction [0.0]
階層的に実装された量子誤り訂正(HI-QEC)を考える。
HI-QECが低エネルギーオブザーバブルを一定精度で計算する際の表面コード資源に与える影響を推定する。
論文 参考訳(メタデータ) (2021-09-05T00:40:02Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。