論文の概要: Error correction of a logical qubit encoded in a single atomic ion
- arxiv url: http://arxiv.org/abs/2503.13908v1
- Date: Tue, 18 Mar 2025 05:10:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 16:29:12.357564
- Title: Error correction of a logical qubit encoded in a single atomic ion
- Title(参考訳): 単一原子イオンに符号化された論理量子ビットの誤り補正
- Authors: Kyle DeBry, Nadine Meister, Agustin Valdes Martinez, Colin D. Bruzewicz, Xiaoyang Shi, David Reens, Robert McConnell, Isaac L. Chuang, John Chiaverini,
- Abstract要約: 量子誤り訂正(QEC)は、量子コンピュータが有用なアルゴリズムを実行するために不可欠である。
近年の研究では、単一粒子レベルで誤り訂正を行うための補完的なアプローチが提案されている。
ここでは、QECを単一原子イオンで示し、最大2.2倍の誤差を減少させ、量子ビットの有用な寿命を最大1.5倍に拡張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction (QEC) is essential for quantum computers to perform useful algorithms, but large-scale fault-tolerant computation remains out of reach due to demanding requirements on operation fidelity and the number of controllable quantum bits (qubits). Traditional QEC schemes involve encoding each logical qubit into multiple physical qubits, requiring a significant overhead in resources and complexity. Recent theoretical work has proposed a complementary approach of performing error correction at the single-particle level by taking advantage of additional available quantum states, potentially reducing QEC overhead. However, this approach has not been demonstrated experimentally, due in part to the difficulty of performing error measurements and subsequent error correction with high fidelity. Here we demonstrate QEC in a single atomic ion that decreases errors by a factor of up to 2.2 and extends the qubit's useful lifetime by a factor of up to 1.5 compared to an unencoded qubit. The qubit is encoded in spin-cat logical states, and we develop a scheme for autonomous error correction that does not require mid-circuit measurements of an ancilla. Our work is applicable to a wide variety of finite-dimensional quantum systems, and such encodings may prove useful either as components of larger QEC codes, or when used alone in few-qubit devices, such as quantum network nodes.
- Abstract(参考訳): 量子誤り訂正(QEC)は、量子コンピュータが有用なアルゴリズムを実行するために必須であるが、大規模なフォールトトレラント計算は、演算の忠実さと制御可能な量子ビットの数(量子ビット)の要求により到達できない。
従来のQECスキームでは、各論理キュービットを複数の物理キュービットに符号化し、リソースと複雑さに大きなオーバーヘッドを必要とする。
近年の理論的研究は、追加の量子状態を利用して単一粒子レベルで誤り訂正を行うための補完的なアプローチを提案しており、QECオーバーヘッドを減少させる可能性がある。
しかし, 誤差測定の難しさや, その後の高精度な誤差補正の難しさなどにより, 実験的な実験は行われていない。
ここでは、QECを単一原子イオンで示し、最大2.2の係数で誤差を減少させ、量子ビットの有用な寿命を、符号化されていない量子ビットと比較して1.5の係数で拡張する。
量子ビットはスピンキャット論理状態に符号化され,アシラの中間回路計測を必要としない自動誤差補正法を開発した。
我々の研究は、多種多様な有限次元量子システムに適用可能であり、そのような符号化は、より大きなQEC符号の構成要素として、あるいは量子ネットワークノードのような数量子ビットデバイスで単独で用いられる場合にも有用である。
関連論文リスト
- Assessing Teleportation of Logical Qubits in a Distributed Quantum Architecture under Error Correction [4.352368481242436]
短期的なネットワークノイズであっても,論理量子ビットは論理誤り率が非常に低いノード間で伝送可能であることを示す。
回路レベルのシミュレーションを用いて10-1ドルから10-6ドルまでの物理・ネットワークノイズ状態を評価する。
論文 参考訳(メタデータ) (2025-04-08T01:56:19Z) - Quantum LDPC codes for erasure-biased atomic quantum processors [0.0]
量子低密度パリティ・チェック(LDPC)符号は、最近、フォールトトレラント量子コンピューティングへの道筋を示すことが示されている。
支配的エラーが消去である場合、量子LDPC符号は高いしきい値とより強力な論理的誤り抑制を与える。
論文 参考訳(メタデータ) (2025-02-27T15:23:40Z) - Weakly Fault-Tolerant Computation in a Quantum Error-Detecting Code [0.0]
完全なフォールトトレランスを達成する多くの現在の量子誤り訂正符号は、論理量子ビットと物理量子ビットの比率が低く、大きなオーバーヘッドがある。
我々は,[n,n-2,2]]量子誤り検出符号の構成を,単一故障ゲートから任意の誤りを検出する中間点として提案する。
論文 参考訳(メタデータ) (2024-08-27T07:25:36Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
我々は、最小限の化学例に基づいて、フォールトトレラントに量子位相推定を行うために必要な資源を推定する。
単純な化学回路でさえも1000キュービットと2300の量子誤差補正ラウンドを必要とすることがわかった。
論文 参考訳(メタデータ) (2023-07-06T18:00:10Z) - Single-shot decoding of good quantum LDPC codes [38.12919328528587]
量子タナー符号が逆雑音の単ショット量子誤り補正(QEC)を促進することを証明した。
本稿では,複数ラウンドのQECにおける誤りを抑えるために,並列復号アルゴリズムを各ラウンドで一定時間実行するのに十分であることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:00:01Z) - Hardware efficient autonomous error correction with linear couplers in
superconducting circuits [0.5428370406156905]
大規模量子コンピュータは、情報のデコヒーレンスを防ぐために、必然的に量子エラー補正(QEC)を必要とする。
AQECスキームは、エラー状態をエンジニアリングされた散逸によって効率的に除去できる励起に変換することで機能する。
Liらによる最近提案されたAQECスキームは、スター符号と呼ばれ、2つのトランスモンをチューナブルカプラと2つの損失共振器を冷却源とするエンコーダとして、全ての単一キュービットエラーチャネルを自律的に修正または抑制することができる。
論文 参考訳(メタデータ) (2023-03-02T09:44:55Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Quantum Neuron with Separable-State Encoding [0.0]
現在利用可能な量子プロセッサにおいて、高度な量子ニューロンモデルを大規模にテストすることは、まだ不可能である。
マルチキュービットゲート数を削減した量子パーセプトロン(QP)モデルを提案する。
シミュレーション量子コンピュータにおいて,QPの量子ビットバージョンをいくつか実装することにより,提案モデルの性能を実証する。
論文 参考訳(メタデータ) (2022-02-16T19:26:23Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
本稿では,5つのデータ量子ビットと5つのアンシラ量子ビットしか必要としない最小距離3QEC符号に基づく回路を提案する。
そのフットプリントが小さいため、提案したコードは、同様の物理エラー率でSurface-17よりも論理エラー率が低い。
論文 参考訳(メタデータ) (2021-07-14T05:29:59Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。