RotCAtt-TransUNet++: Novel Deep Neural Network for Sophisticated Cardiac Segmentation
- URL: http://arxiv.org/abs/2409.05280v2
- Date: Wed, 23 Oct 2024 04:41:51 GMT
- Title: RotCAtt-TransUNet++: Novel Deep Neural Network for Sophisticated Cardiac Segmentation
- Authors: Quoc-Bao Nguyen-Le, Tuan-Hy Le, Anh-Triet Do, Quoc-Huy Trinh,
- Abstract summary: We present RotCAtt-TransUNet++, a novel architecture tailored for robust segmentation of complex cardiac structures.
Our approach emphasizes modeling global contexts by aggregating multiscale features with nested skip connections in the encoder.
Experimental results demonstrate that our proposed model outperforms existing SOTA approaches across four cardiac datasets and one abdominal dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiovascular disease remains a predominant global health concern, responsible for a significant portion of mortality worldwide. Accurate segmentation of cardiac medical imaging data is pivotal in mitigating fatality rates associated with cardiovascular conditions. However, existing state-of-the-art (SOTA) neural networks, including both CNN-based and Transformer-based approaches, exhibit limitations in practical applicability due to their inability to effectively capture inter-slice connections alongside intra-slice information. This deficiency is particularly evident in datasets featuring intricate, long-range details along the z-axis, such as coronary arteries in axial views. Additionally, SOTA methods fail to differentiate non-cardiac components from myocardium in segmentation, leading to the "spraying" phenomenon. To address these challenges, we present RotCAtt-TransUNet++, a novel architecture tailored for robust segmentation of complex cardiac structures. Our approach emphasizes modeling global contexts by aggregating multiscale features with nested skip connections in the encoder. It integrates transformer layers to capture interactions between patches and employs a rotatory attention mechanism to capture connectivity between multiple slices (inter-slice information). Additionally, a channel-wise cross-attention gate guides the fused multi-scale channel-wise information and features from decoder stages to bridge semantic gaps. Experimental results demonstrate that our proposed model outperforms existing SOTA approaches across four cardiac datasets and one abdominal dataset. Importantly, coronary arteries and myocardium are annotated with near-perfect accuracy during inference. An ablation study shows that the rotatory attention mechanism effectively transforms embedded vectorized patches in the semantic dimensional space, enhancing segmentation accuracy.
Related papers
- Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Echocardiography Segmentation with Enforced Temporal Consistency [10.652677452009627]
We propose a framework to learn the 2D+time long-axis cardiac shape.
The identification and correction of cardiac inconsistencies relies on a constrained autoencoder trained to learn a physiologically interpretable embedding of cardiac shapes.
arXiv Detail & Related papers (2021-12-03T16:09:32Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.