論文の概要: Graffin: Stand for Tails in Imbalanced Node Classification
- arxiv url: http://arxiv.org/abs/2409.05339v1
- Date: Mon, 9 Sep 2024 05:31:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:50:59.566972
- Title: Graffin: Stand for Tails in Imbalanced Node Classification
- Title(参考訳): Graffin: バランスの取れないノードの分類におけるタオルのためのスタンド
- Authors: Xiaorui Qi, Yanlong Wen, Xiaojie Yuan,
- Abstract要約: Graffinはグラフ表現学習のためのプラグイン可能なテールデータ拡張モジュールである。
モデル全体の性能を著しく低下させることなく、Graffinはテールデータへの適応性を向上できることを示す。
- 参考スコア(独自算出の注目度): 12.752456068367488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph representation learning (GRL) models have succeeded in many scenarios. Real-world graphs have imbalanced distribution, such as node labels and degrees, which leaves a critical challenge to GRL. Imbalanced inputs can lead to imbalanced outputs. However, most existing works ignore it and assume that the distribution of input graphs is balanced, which cannot align with real situations, resulting in worse model performance on tail data. The domination of head data makes tail data underrepresented when training graph neural networks (GNNs). Thus, we propose Graffin, a pluggable tail data augmentation module, to address the above issues. Inspired by recurrent neural networks (RNNs), Graffin flows head features into tail data through graph serialization techniques to alleviate the imbalance of tail representation. The local and global structures are fused to form the node representation under the combined effect of neighborhood and sequence information, which enriches the semantics of tail data. We validate the performance of Graffin on four real-world datasets in node classification tasks. Results show that Graffin can improve the adaptation to tail data without significantly degrading the overall model performance.
- Abstract(参考訳): グラフ表現学習(GRL)モデルは多くのシナリオで成功している。
実世界のグラフはノードラベルや次数などの不均衡な分布を持ち、GRLに重要な課題を残している。
不均衡な入力は不均衡な出力につながる可能性がある。
しかし、既存のほとんどの研究はそれを無視し、入力グラフの分布がバランスが取れていると仮定し、実際の状況と一致しないため、テールデータ上でのモデル性能が悪化する。
ヘッドデータの優位性は、グラフニューラルネットワーク(GNN)のトレーニングにおいて、テールデータを過小評価する。
そこで本稿では,プラグイン可能なテールデータ拡張モジュールであるGraffinを提案する。
繰り返しニューラルネットワーク(RNN)にインスパイアされたGraffinは、テール表現の不均衡を軽減するために、グラフシリアライゼーション技術を通じてヘッド機能をテールデータに流す。
局所構造と大域構造は、近傍情報とシーケンス情報の組み合わせ効果の下でノード表現を形成するために融合され、テールデータのセマンティクスが強化される。
ノード分類タスクにおける4つの実世界のデータセット上でのGraffinの性能を検証する。
その結果、モデル全体の性能を著しく低下させることなく、Graffinはテールデータへの適応性を向上できることがわかった。
関連論文リスト
- Graph Unlearning with Efficient Partial Retraining [28.433619085748447]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで顕著な成功を収めている。
GNNは、望ましくないグラフデータに基づいてトレーニングされ、パフォーマンスと信頼性を低下させることができる。
学習不能なGNNのモデルユーティリティをよりよく維持するグラフアンラーニングフレームワークであるGraphRevokerを提案する。
論文 参考訳(メタデータ) (2024-03-12T06:22:10Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習において顕著な成功を収めた。
本稿では,グラフの局所化部分集合に対するGNNのトレーニングの影響を評価することを目的とする。
本稿では,局所化学習データとグラフ推論との分散不一致を最小化する正規化手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T11:04:22Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
ノード分類のためのグラフエコー状態ネットワーク(GESN)を用いた異種グラフの課題に対処する。
GESNはグラフのための貯水池計算モデルであり、ノードの埋め込みは訓練されていないメッセージパッシング関数によって計算される。
実験の結果, 貯水池モデルでは, ほぼ完全に訓練された深層モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-14T19:42:31Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
グラフニューラルネットワーク(GNN)は、グラフデータのテストとトレーニングを同一の分布から行うことで、優れたパフォーマンスを実現している。
既存のGNNでは、テストとグラフデータのトレーニングの間に分散シフトが存在する場合、その性能が著しく低下する。
本稿では,学習グラフと異なる分布を持つ未確認試験グラフに対して,満足な性能を実現するために,アウト・オブ・ディストリビューション一般化グラフニューラルネットワーク(OOD-GNN)を提案する。
論文 参考訳(メタデータ) (2021-12-07T16:29:10Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Graph Classification by Mixture of Diverse Experts [67.33716357951235]
我々は,不均衡なグラフ分類に多様な専門家の混在を利用したフレームワークであるGraphDIVEを提案する。
GraphDIVEは、分割と並列の原則により、不均衡なグラフデータセットを複数のサブセットに分割するゲーティングネットワークを採用しています。
実世界の不均衡グラフデータセットに関する実験は、GraphDIVEの有効性を示している。
論文 参考訳(メタデータ) (2021-03-29T14:03:03Z) - SSFG: Stochastically Scaling Features and Gradients for Regularizing
Graph Convolution Networks [7.075802972628797]
繰り返しグラフ畳み込みを適用すると、余計な問題を引き起こす可能性がある。
この問題に対処するための正規化手法を提案する。
本手法は,ベースライングラフネットワーク全体の性能を効果的に改善する。
論文 参考訳(メタデータ) (2021-02-20T12:59:48Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。