Robust Non-adaptive Group Testing under Errors in Group Membership Specifications
- URL: http://arxiv.org/abs/2409.05345v1
- Date: Mon, 9 Sep 2024 06:03:23 GMT
- Title: Robust Non-adaptive Group Testing under Errors in Group Membership Specifications
- Authors: Shuvayan Banerjee, Radhendushka Srivastava, James Saunderson, Ajit Rajwade,
- Abstract summary: Group testing (GT) aims to determine defect status by performing tests on $n p$ groups', where a group is formed by mixing a subset of the $p$ samples.
Most existing methods, however, assume that the group memberships are accurately specified.
We develop a new GT method, the Debiased Robust Lasso Test Method (DRLT), that handles such group membership specification errors.
- Score: 3.554868356768806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given $p$ samples, each of which may or may not be defective, group testing (GT) aims to determine their defect status by performing tests on $n < p$ `groups', where a group is formed by mixing a subset of the $p$ samples. Assuming that the number of defective samples is very small compared to $p$, GT algorithms have provided excellent recovery of the status of all $p$ samples with even a small number of groups. Most existing methods, however, assume that the group memberships are accurately specified. This assumption may not always be true in all applications, due to various resource constraints. Such errors could occur, eg, when a technician, preparing the groups in a laboratory, unknowingly mixes together an incorrect subset of samples as compared to what was specified. We develop a new GT method, the Debiased Robust Lasso Test Method (DRLT), that handles such group membership specification errors. The proposed DRLT method is based on an approach to debias, or reduce the inherent bias in, estimates produced by Lasso, a popular and effective sparse regression technique. We also provide theoretical upper bounds on the reconstruction error produced by our estimator. Our approach is then combined with two carefully designed hypothesis tests respectively for (i) the identification of defective samples in the presence of errors in group membership specifications, and (ii) the identification of groups with erroneous membership specifications. The DRLT approach extends the literature on bias mitigation of statistical estimators such as the LASSO, to handle the important case when some of the measurements contain outliers, due to factors such as group membership specification errors. We present numerical results which show that our approach outperforms several baselines and robust regression techniques for identification of defective samples as well as erroneously specified groups.
Related papers
- Multi-Group Fairness Evaluation via Conditional Value-at-Risk Testing [24.553384023323332]
We propose an approach to test for performance disparities based on Conditional Value-at-Risk.
We show that the sample complexity required for discovering performance violations is reduced exponentially to be at most upper bounded by the square root of the number of groups.
arXiv Detail & Related papers (2023-12-06T19:25:32Z) - Statistical Performance Guarantee for Subgroup Identification with
Generic Machine Learning [1.0878040851638]
We develop uniform confidence bands for estimation of the group average treatment effect sorted by generic ML algorithm (GATES)
We analyze a clinical trial of late-stage prostate cancer and find a relatively large proportion of exceptional responders.
arXiv Detail & Related papers (2023-10-12T01:41:47Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
We propose BAM, a novel two-stage training algorithm.
In the first stage, the model is trained using a bias amplification scheme via introducing a learnable auxiliary variable for each training sample.
In the second stage, we upweight the samples that the bias-amplified model misclassifies, and then continue training the same model on the reweighted dataset.
arXiv Detail & Related papers (2023-09-13T04:40:08Z) - Is this model reliable for everyone? Testing for strong calibration [4.893345190925178]
In a well-calibrated risk prediction model, the average predicted probability is close to the true event rate for any given subgroup.
The task of auditing a model for strong calibration is well-known to be difficult due to the sheer number of potential subgroups.
Recent developments in goodness-of-fit testing offer potential solutions but are not designed for settings with weak signal.
arXiv Detail & Related papers (2023-07-28T00:59:14Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Statistical and Computational Phase Transitions in Group Testing [73.55361918807883]
We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease.
We consider two different simple random procedures for assigning individuals tests.
arXiv Detail & Related papers (2022-06-15T16:38:50Z) - False membership rate control in mixture models [1.387448620257867]
A clustering task consists in partitioning elements of a sample into homogeneous groups.
In the supervised setting, this approach is well known and referred to as classification with an abstention option.
In this paper the approach is revisited in an unsupervised mixture model framework and the purpose is to develop a method that comes with the guarantee that the false membership rate does not exceed a pre-defined nominal level.
arXiv Detail & Related papers (2022-03-04T22:37:59Z) - Group Testing with Non-identical Infection Probabilities [59.96266198512243]
We develop an adaptive group testing algorithm using the set formation method.
We show that our algorithm outperforms the state of the art, and performs close to the entropy lower bound.
arXiv Detail & Related papers (2021-08-27T17:53:25Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually.
Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting.
arXiv Detail & Related papers (2020-04-26T23:41:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.