KARGEN: Knowledge-enhanced Automated Radiology Report Generation Using Large Language Models
- URL: http://arxiv.org/abs/2409.05370v1
- Date: Mon, 9 Sep 2024 06:57:22 GMT
- Title: KARGEN: Knowledge-enhanced Automated Radiology Report Generation Using Large Language Models
- Authors: Yingshu Li, Zhanyu Wang, Yunyi Liu, Lei Wang, Lingqiao Liu, Luping Zhou,
- Abstract summary: This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on Large Language Models.
The framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports.
Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
- Score: 39.831976458410864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Harnessing the robust capabilities of Large Language Models (LLMs) for narrative generation, logical reasoning, and common-sense knowledge integration, this study delves into utilizing LLMs to enhance automated radiology report generation (R2Gen). Despite the wealth of knowledge within LLMs, efficiently triggering relevant knowledge within these large models for specific tasks like R2Gen poses a critical research challenge. This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on LLMs. Utilizing a frozen LLM to generate reports, the framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports. This is achieved by leveraging the knowledge graph to distill disease-related features in a designed way. Since a radiology report encompasses both normal and disease-related findings, the extracted graph-enhanced disease-related features are integrated with regional image features, attending to both aspects. We explore two fusion methods to automatically prioritize and select the most relevant features. The fused features are employed by LLM to generate reports that are more sensitive to diseases and of improved quality. Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
Related papers
- Resource-Efficient Medical Report Generation using Large Language Models [3.2627279988912194]
Medical report generation is the task of automatically writing radiology reports for chest X-ray images.
We propose a new framework leveraging vision-enabled Large Language Models (LLM) for the task of medical report generation.
arXiv Detail & Related papers (2024-10-21T05:08:18Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It [12.61239008314719]
This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation.
Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as a vital signsperiodic, medications, and clinical history to enhance diagnostic accuracy.
arXiv Detail & Related papers (2024-06-19T03:25:31Z) - SERPENT-VLM : Self-Refining Radiology Report Generation Using Vision Language Models [9.390882250428305]
Radiology Report Generation (R2Gen) demonstrates how Multi-modal Large Language Models (MLLMs) can automate the creation of accurate and coherent radiological reports.
Existing methods often hallucinate details in text-based reports that don't accurately reflect the image content.
We introduce a novel strategy, which improves the R2Gen task by integrating a self-refining mechanism into the MLLM framework.
arXiv Detail & Related papers (2024-04-27T13:46:23Z) - HistGen: Histopathology Report Generation via Local-Global Feature Encoding and Cross-modal Context Interaction [16.060286162384536]
HistGen is a learning-empowered framework for histopathology report generation.
It aims to boost report generation by aligning whole slide images (WSIs) and diagnostic reports from local and global granularity.
Experimental results on WSI report generation show the proposed model outperforms state-of-the-art (SOTA) models by a large margin.
arXiv Detail & Related papers (2024-03-08T15:51:43Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
We propose a Cross-modal clinical Graph Transformer (CGT) for ophthalmic report generation (ORG)
CGT injects clinical relation triples into the visual features as prior knowledge to drive the decoding procedure.
Experiments on the large-scale FFA-IR benchmark demonstrate that the proposed CGT is able to outperform previous benchmark methods.
arXiv Detail & Related papers (2022-06-04T13:16:30Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
We present an automatic, multi-modal approach for report generation from chest x-ray.
Our approach features two distinct modules: (i) Learned knowledge base and (ii) Multi-modal alignment.
With the aid of both modules, our approach clearly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.