Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models
- URL: http://arxiv.org/abs/2409.05385v3
- Date: Wed, 18 Sep 2024 01:39:02 GMT
- Title: Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models
- Authors: Xingyun Hong, Yan Shao, Zhilin Wang, Manni Duan, Jin Xiongnan,
- Abstract summary: Presence of noise and errors in retrieved information poses challenges to the robustness of LLMs.
To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method.
We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4.
- Score: 4.4849006637642805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of LLMs has greatly enhanced the intelligence and fluency of question answering, while the emergence of retrieval enhancement has enabled models to better utilize external information. However, the presence of noise and errors in retrieved information poses challenges to the robustness of LLMs. In this work, to evaluate the model's performance under multiple interferences, we first construct a dataset based on machine reading comprehension datasets simulating various scenarios, including critical information absence, noise, and conflicts. To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method to enhance LLM's robustness against noise. Additionally, contrastive learning approach is utilized to preserve the model's discrimination capability of external information. We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4, which indicates that our proposed methods improve model robustness while strengthening the model's discrimination capability.
Related papers
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Enhancing Noise Robustness of Retrieval-Augmented Language Models with Adaptive Adversarial Training [39.21885486667879]
Large Language Models (LLMs) exhibit substantial capabilities yet encounter challenges, including hallucination, outdated knowledge, and untraceable reasoning processes.
Retrieval-augmented generation (RAG) has emerged as a promising solution, integrating knowledge from external databases to mitigate these challenges.
We propose a novel RAG approach known as Retrieval-augmented Adaptive Adrial Training (RAAT)
arXiv Detail & Related papers (2024-05-31T16:24:53Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
We propose a novel approach to integrate uncertainty-based active learning and LoRA.
For the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model.
For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident.
arXiv Detail & Related papers (2024-03-02T10:38:10Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$ is a novel data augmentation technique based on large language models (LLMs) for the few-shot NER task.
Our approach involves employing 14 contextual rewriting strategies, designing entity replacements of the same type, and incorporating noise injection to enhance robustness.
arXiv Detail & Related papers (2024-02-22T14:19:56Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.
We introduce a methodology designed to examine how input perturbations affect language models across various scales.
We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
arXiv Detail & Related papers (2023-11-15T02:59:10Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.