Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets
- URL: http://arxiv.org/abs/2311.08662v2
- Date: Mon, 15 Jul 2024 20:59:49 GMT
- Title: Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets
- Authors: Vatsal Gupta, Pranshu Pandya, Tushar Kataria, Vivek Gupta, Dan Roth,
- Abstract summary: Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.
We introduce a methodology designed to examine how input perturbations affect language models across various scales.
We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
- Score: 46.19529338280716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations, causing concerns about trust. To enhance trust, it is imperative to gain a comprehensive understanding of the model's failure modes and develop effective strategies to improve their performance. In this study, we introduce a methodology designed to examine how input perturbations affect language models across various scales, including pre-trained models and large language models (LLMs). Utilizing fine-tuning, we enhance the model's robustness to input perturbations. Additionally, we investigate whether exposure to one perturbation enhances or diminishes the model's performance with respect to other perturbations. To address robustness against multiple perturbations, we present three distinct fine-tuning strategies. Furthermore, we broaden the scope of our methodology to encompass large language models (LLMs) by leveraging a chain of thought (CoT) prompting approach augmented with exemplars. We employ the Tabular-NLI task to showcase how our proposed strategies adeptly train a robust model, enabling it to address diverse perturbations while maintaining accuracy on the original dataset.
Related papers
- Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models [4.4849006637642805]
Presence of noise and errors in retrieved information poses challenges to the robustness of LLMs.
To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method.
We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4.
arXiv Detail & Related papers (2024-09-09T07:32:30Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Analyzing Persuasive Strategies in Meme Texts: A Fusion of Language Models with Paraphrase Enrichment [0.23020018305241333]
This paper describes our approach to hierarchical multi-label detection of persuasion techniques in meme texts.
The scope of the study encompasses enhancing model performance through innovative training techniques and data augmentation strategies.
arXiv Detail & Related papers (2024-07-01T20:25:20Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality [1.5498930424110338]
This study introduces an approach to mitigate bias in machine learning by leveraging model uncertainty.
Our approach utilizes a multi-task learning (MTL) framework combined with Monte Carlo (MC) Dropout to assess and mitigate uncertainty in predictions related to protected labels.
arXiv Detail & Related papers (2024-04-12T04:17:50Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Improving the Robustness of Transformer-based Large Language Models with
Dynamic Attention [43.95101492654236]
Transformer-based models, such as BERT and GPT, have been widely adopted in natural language processing (NLP)
Recent studies show their vulnerability to textual adversarial attacks where the model's output can be misled by intentionally manipulating the text inputs.
We propose a novel method called dynamic attention, tailored for the transformer architecture, to enhance the inherent robustness of the model itself against various adversarial attacks.
arXiv Detail & Related papers (2023-11-29T07:09:13Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
In communication systems, there are many tasks, like modulation recognition, which rely on Deep Neural Networks (DNNs) models.
These models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise crafted to induce misclassification.
We propose to use adversarial training, which consists of fine-tuning the model with adversarial perturbations, to increase the robustness of automatic modulation recognition models.
arXiv Detail & Related papers (2021-05-28T11:29:04Z) - Evaluating Deception Detection Model Robustness To Linguistic Variation [10.131671217810581]
We propose an analysis of model robustness against linguistic variation in the setting of deceptive news detection.
We consider two prediction tasks and compare three state-of-the-art embeddings to highlight consistent trends in model performance.
We find that character or mixed ensemble models are the most effective defenses and that character perturbation-based attack tactics are more successful.
arXiv Detail & Related papers (2021-04-23T17:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.