Contributions to the study of time dependent oscillators in Paul traps. Semiclassical approach
- URL: http://arxiv.org/abs/2409.05441v1
- Date: Mon, 9 Sep 2024 08:44:25 GMT
- Title: Contributions to the study of time dependent oscillators in Paul traps. Semiclassical approach
- Authors: Bogdan M. Mihalcea,
- Abstract summary: We investigate quantum dynamics for an ion confined within an oscillating quadrupole field.
It is established that the Hamilton equations of motion, in both Schr"odinger and Heisenberg representations, are equivalent to the Hill equation.
The quantum states for trapped ions are demonstrated to be Fock (number) states, while the exact solutions of the Schr"odinger equation for a trapped ion are exactly the quasienergy states.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate quantum dynamics for an ion confined within an oscillating quadrupole field, starting from two well known and elegant approaches. It is established that the Hamilton equations of motion, in both Schr\"{o}dinger and Heisenberg representations, are equivalent to the Hill equation. One searches for a linear independent solution associated to a harmonic oscillator (HO). An adiabatic invariant, which is also a constant of motion, is introduced based on the Heisenberg representation. Thus, the state of the non-autonomous system can be determined at any subsequent moment of time. The quantum states for trapped ions are demonstrated to be Fock (number) states, while the exact solutions of the Schr\"{o}dinger equation for a trapped ion are exactly the quasienergy states. Semiclassical dynamics is also investigated for many-body systems of trapped ions, where the wavefunction associated to the Schr\"{o}dinger equation is prepared as a Gauss package multiplied by a Hermite polynomial. We also discuss time evolution for the system under investigation and supply the propagator.
Related papers
- Quantum propagator for a general time-dependent quadratic Hamiltonian:
Application to interacting oscillators in external fields [0.0]
We find the quantum propagator for a general time-dependent quadratic Hamiltonian.
The state and excitation propagation along the harmonic chain in the absence and presence of an external classical source is studied and discussed.
arXiv Detail & Related papers (2023-05-30T14:17:04Z) - Emulating the measurement postulates of quantum mechanics via
non-Hermitian Hamiltonian [0.0]
We show that a non-Hermitian Hamiltonian operates during the process of measurement, which evolves any state to an attracting equilibrium state, thus, mimicking a "collapse"
For a 2-level system, we also demonstrate that the dynamics generated by the Lindblad master equation can be replicated as an incoherent sum of the evolution by two separate non-Hermitian Hamiltonians.
arXiv Detail & Related papers (2023-02-03T18:22:10Z) - Describing the Wave Function Collapse Process with a State-dependent
Hamiltonian [3.8326963933937885]
We show how the continuous collapse of the wave function can be described by the Schr"odinger equation with a time-dependent Hamiltonian.
We then discuss how the above formalism can also be applied to describe the collapse of the wave function of mixed quantum states.
arXiv Detail & Related papers (2023-01-23T05:08:35Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Dispersion chain of quantum mechanics equations [0.0]
The paper considers the construction of a new chain of equations of quantum mechanics of high kinematical values.
The proposed approach can be applied to consideration of classical and quantum systems with radiation.
arXiv Detail & Related papers (2022-09-28T12:58:19Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Classical analog of qubit logic based on a magnon Bose-Einstein
condensate [52.77024349608834]
We present a classical version of several quantum bit (qubit) functionalities using a two-component magnon Bose-Einstein condensate.
The macroscopic wavefunctions of these two condensates serve as orthonormal basis states that form a system being a classical counterpart of a single qubit.
arXiv Detail & Related papers (2021-11-12T16:14:46Z) - Quasienergy operators and generalized squeezed states for systems of
trapped ions [0.0]
Quantum stability is characterized by a discrete quasienergy spectrum, while quasienergy states are symplectic coherent states.
We introduce the generators of the Lie algebra of the symplectic group $cal SL(2, mathbb R)$, which we use to build the coherent states associated to the system under investigation.
arXiv Detail & Related papers (2021-08-26T07:48:09Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.