Generalized Abel-Plana formula as a renormalization tool in quantum field theory
- URL: http://arxiv.org/abs/2409.05465v1
- Date: Mon, 9 Sep 2024 09:46:25 GMT
- Title: Generalized Abel-Plana formula as a renormalization tool in quantum field theory
- Authors: A. A. Saharian,
- Abstract summary: In quantum field theory the vacuum expectation values of physical observables, bilinear in the field operator, diverge.
In problems with boundaries the expectation values are expressed in the form of the difference of the divergent series and the corresponding integral.
In problems with planar boundaries a finite integral representation for that difference is provided by the Abel-Plana summation formula.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum field theory the vacuum expectation values of physical observables, bilinear in the field operator, diverge. Among the most important points in the investigations of those expectation values is the regularization of divergent expressions, separation of divergences and the renormalization. In problems with boundaries the expectation values are expressed in the form of the difference of the divergent series and the corresponding integral. In problems with planar boundaries a finite integral representation for that difference is provided by the Abel-Plana summation formula. In the present contribution we consider the generalization of the Abel-Plana formula that allows to obtain similar representations for more general classes of series where the summation goes over the zeros of a given function. Applications are discussed in quantum field theoretical problems with nontrivial spatial topology and curved boundaries.
Related papers
- Linearization (in)stabilities and crossed products [0.0]
Linearization (in)stabilities occur in any gauge-covariant field theory with non-linear equations.
We study when linearized solutions can be integrated to exact ones.
We translate the subject from the usual canonical formulation into a systematic covariant phase space language.
arXiv Detail & Related papers (2024-11-29T18:47:17Z) - Limit Distribution Theory for Quantum Divergences [8.11839312231511]
We show that a limit distribution theory which characterizes the fluctuations of the estimation error is still premature.
As an application of our results, we consider an estimator of quantum relative entropy based on Pauli tomography of quantum states and show that the resulting distribution is a normal, with its variance characterized in terms of the Pauli operators and states.
We utilize the knowledge of the aforementioned limit distribution to obtain performance guarantees for a multi-hypothesis testing problem.
arXiv Detail & Related papers (2023-11-22T21:06:41Z) - Convergence of Dynamics on Inductive Systems of Banach Spaces [68.8204255655161]
Examples are phase transitions in the thermodynamic limit, the emergence of classical mechanics from quantum theory at large action, and continuum quantum field theory arising from renormalization group fixed points.
We present a flexible modeling tool for the limit of theories: soft inductive limits constituting a generalization of inductive limits of Banach spaces.
arXiv Detail & Related papers (2023-06-28T09:52:20Z) - General Solution and Canonical Quantization of the Conic Path
Constrained Second-Class System [0.0]
We consider the problem of constrained motion along a conic path under a given external potential function.
We perform the canonical quantization in a consistent way in terms of the corresponding Dirac brackets.
The complete Dirac brackets algebra in phase space as well as its physical realization in terms of differential operators is explicitly obtained.
arXiv Detail & Related papers (2022-02-15T13:46:56Z) - Non-perturbative Quantum Propagators in Bounded Spaces [0.0]
A generalised hit function is defined as a many-point propagator.
We show how it can be used to calculate the Feynman propagator.
We conjecture a general analytical formula for the propagator when Dirichlet boundary conditions are present in a given geometry.
arXiv Detail & Related papers (2021-10-11T02:47:26Z) - Conformal field theory from lattice fermions [77.34726150561087]
We provide a rigorous lattice approximation of conformal field theories given in terms of lattice fermions in 1+1-dimensions.
We show how these results lead to explicit error estimates pertaining to the quantum simulation of conformal field theories.
arXiv Detail & Related papers (2021-07-29T08:54:07Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - The semiring of dichotomies and asymptotic relative submajorization [0.0]
We study quantum dichotomies and the resource theory of asymmetric distinguishability using a generalization of Strassen's theorem on preordered semirings.
We find that an variant of relative submajorization, defined on unnormalized dichotomies, is characterized by real-valued monotones that are multiplicative under the tensor product and additive under the direct sum.
arXiv Detail & Related papers (2020-04-22T14:13:26Z) - Operator-algebraic renormalization and wavelets [62.997667081978825]
We construct the continuum free field as the scaling limit of Hamiltonian lattice systems using wavelet theory.
A renormalization group step is determined by the scaling equation identifying lattice observables with the continuum field smeared by compactly supported wavelets.
arXiv Detail & Related papers (2020-02-04T18:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.