論文の概要: PVP-Recon: Progressive View Planning via Warping Consistency for Sparse-View Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2409.05474v1
- Date: Mon, 9 Sep 2024 10:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:10:24.506723
- Title: PVP-Recon: Progressive View Planning via Warping Consistency for Sparse-View Surface Reconstruction
- Title(参考訳): PVP-Recon:スパークビュー表面再構成のためのウォーピング整合によるプログレッシブビュープランニング
- Authors: Sheng Ye, Yuze He, Matthieu Lin, Jenny Sheng, Ruoyu Fan, Yiheng Han, Yubin Hu, Ran Yi, Yu-Hui Wen, Yong-Jin Liu, Wenping Wang,
- Abstract要約: PVP-Recon, 新規かつ効果的なスパースビュー表面再構成法を提案する。
PVP-Reconは3つのビューで初期表面の再構築を開始し、徐々に新しいビューを追加する。
このプログレッシブビュー計画の進捗は、神経SDFベースの再構築モジュールによってインターリーブされる。
- 参考スコア(独自算出の注目度): 49.7580491592023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit representations have revolutionized dense multi-view surface reconstruction, yet their performance significantly diminishes with sparse input views. A few pioneering works have sought to tackle the challenge of sparse-view reconstruction by leveraging additional geometric priors or multi-scene generalizability. However, they are still hindered by the imperfect choice of input views, using images under empirically determined viewpoints to provide considerable overlap. We propose PVP-Recon, a novel and effective sparse-view surface reconstruction method that progressively plans the next best views to form an optimal set of sparse viewpoints for image capturing. PVP-Recon starts initial surface reconstruction with as few as 3 views and progressively adds new views which are determined based on a novel warping score that reflects the information gain of each newly added view. This progressive view planning progress is interleaved with a neural SDF-based reconstruction module that utilizes multi-resolution hash features, enhanced by a progressive training scheme and a directional Hessian loss. Quantitative and qualitative experiments on three benchmark datasets show that our framework achieves high-quality reconstruction with a constrained input budget and outperforms existing baselines.
- Abstract(参考訳): ニューラルな暗黙表現は、密集した多面的表面再構成に革命をもたらしたが、その性能はスパース入力ビューによって著しく低下した。
幾らかの先駆的な研究は、追加の幾何学的先行やマルチシーンの一般化性を活用することで、スパースビュー再構築の課題に取り組むことを目指している。
しかし、経験的に決定された視点の下の画像を用いて、入力ビューの不完全な選択が依然として妨げられている。
PVP-Reconは、画像キャプチャのためのスパース視点の最適セットを形成するために、次のベストビューを段階的に計画する、新規で効果的なスパースビュー表面再構成手法である。
PVP-Reconは、最大3つのビューで初期表面の再構築を開始し、新たに追加されたビューの情報ゲインを反映した新しいワープスコアに基づいて決定される新しいビューを徐々に追加する。
このプログレッシブ・ビュー・プランニング・プログレッシブ・プランニング・プログレッシブ・プログレッシブ・トレーニング・スキームと指向性ヘッセン・ロスによって強化されたマルチレゾリューション・ハッシュ機能を利用するニューラル・SDFベースの再構築モジュールがインターリーブされる。
3つのベンチマークデータセットの定量的および定性的な実験により、我々のフレームワークは、制約された入力予算で高品質な再構築を実現し、既存のベースラインを上回ります。
関連論文リスト
- Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
ニューラルサーフェス・コンストラクション(NSR)の最近の進歩は、ボリュームレンダリングと組み合わせることで、マルチビュー・コンストラクションを著しく改善している。
本稿では,多種多様な視覚的タスクから価値ある特徴を活用すべく,特徴レベルの一貫した損失について検討する。
DTU と EPFL を用いて解析した結果,画像マッチングと多視点ステレオデータセットによる特徴が,他のプリテキストタスクよりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-08-04T16:09:46Z) - MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References [49.71130133080821]
MaRINeRは、近くのマッピング画像の情報を活用して、ターゲット視点のレンダリングを改善する方法である。
暗黙のシーン表現と暗黙のシーン表現の両方から、定量的な指標と定性的な例のレンダリングの改善を示す。
論文 参考訳(メタデータ) (2024-07-18T17:50:03Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
本研究では,表面の高度に忠実な再構成を実現するために,地上の事前情報を活用する新しいスパース・ビュー・リコンストラクション・フレームワークを提案する。
具体的には,大域的幾何アライメントと局所的幾何洗練に関するいくつかの制約を設計し,粗い形状と細部を協調的に最適化する。
DTUとBlendedMVSデータセットによる2つの一般的なスパース設定の実験結果は、最先端の手法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2023-12-21T16:04:45Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
本稿では、ビュー依存色とビュー非依存色を分離する2段階のトレーニングプロセスを提案し、さらに2つの新しい一貫性制約を活用して、余分な事前処理を必要とせず、詳細な再構成性能を向上させる。
合成および実世界のデータセットの実験は、事前推定誤差から干渉を減らす能力を示している。
論文 参考訳(メタデータ) (2023-09-18T13:05:23Z) - VolRecon: Volume Rendering of Signed Ray Distance Functions for
Generalizable Multi-View Reconstruction [64.09702079593372]
VolRecon は Signed Ray Distance Function (SRDF) を用いた新しい一般化可能な暗黙的再構成法である
DTUデータセットでは、VolReconはスパースビュー再構築においてSparseNeuSを約30%上回り、フルビュー再構築においてMVSNetと同等の精度を達成する。
論文 参考訳(メタデータ) (2022-12-15T18:59:54Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
暗黙の神経表現はオフラインの3D再構成において魅力的な結果を示しており、オンラインSLAMシステムの可能性も最近示している。
本論文は,1)新しい表現に基づく視点計画の質を評価するための基準を求めること,2)手作りではなく,異なる場面に一般化可能なデータから基準を学習すること,の2つの課題に対処する。
本手法は, TSDFを用いた変形モデルやビュープランニングなしでの再構成モデルと比較した場合, レンダリングされた画像品質と再構成された3次元モデルの幾何学的品質について, 様々な指標について有意な改善を示す。
論文 参考訳(メタデータ) (2022-07-22T10:05:36Z) - SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse
views [40.7986573030214]
SparseNeuSは,多視点画像から表面再構成を行う新しいニューラルレンダリング手法である。
SparseNeuSは、新しいシーンに一般化し、スパースイメージ(2または3まで)でうまく機能する。
論文 参考訳(メタデータ) (2022-06-12T13:34:03Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
最先端のニューラル暗黙法は、多くの入力ビューから単純なシーンの高品質な再構築を可能にする。
これは主に、十分な制約を提供していないRGB再構築損失の固有の曖昧さによって引き起こされる。
近年の単分子形状予測の分野での進歩に触発され, ニューラルな暗黙的表面再構成の改善にこれらの方法が役立つかを探究する。
論文 参考訳(メタデータ) (2022-06-01T17:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。