Advancing Machine Learning for Stellar Activity and Exoplanet Period Rotation
- URL: http://arxiv.org/abs/2409.05482v1
- Date: Mon, 9 Sep 2024 10:25:13 GMT
- Title: Advancing Machine Learning for Stellar Activity and Exoplanet Period Rotation
- Authors: Fatemeh Fazel Hesar, Bernard Foing, Ana M. Heras, Mojtaba Raouf, Victoria Foing, Shima Javanmardi, Fons J. Verbeek,
- Abstract summary: This study applied machine learning models to estimate stellar rotation periods from corrected light curve data obtained by the NASA Kepler mission.
Traditional methods often struggle to estimate rotation periods accurately due to noise and variability in the light curve data.
We employed several machine learning algorithms, including Decision Tree, Random Forest, K-Nearest Neighbors, and Gradient Boosting, and also utilized a Voting Ensemble approach to improve prediction accuracy and robustness.
- Score: 0.3926357402982764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study applied machine learning models to estimate stellar rotation periods from corrected light curve data obtained by the NASA Kepler mission. Traditional methods often struggle to estimate rotation periods accurately due to noise and variability in the light curve data. The workflow involved using initial period estimates from the LS-Periodogram and Transit Least Squares techniques, followed by splitting the data into training, validation, and testing sets. We employed several machine learning algorithms, including Decision Tree, Random Forest, K-Nearest Neighbors, and Gradient Boosting, and also utilized a Voting Ensemble approach to improve prediction accuracy and robustness. The analysis included data from multiple Kepler IDs, providing detailed metrics on orbital periods and planet radii. Performance evaluation showed that the Voting Ensemble model yielded the most accurate results, with an RMSE approximately 50\% lower than the Decision Tree model and 17\% better than the K-Nearest Neighbors model. The Random Forest model performed comparably to the Voting Ensemble, indicating high accuracy. In contrast, the Gradient Boosting model exhibited a worse RMSE compared to the other approaches. Comparisons of the predicted rotation periods to the photometric reference periods showed close alignment, suggesting the machine learning models achieved high prediction accuracy. The results indicate that machine learning, particularly ensemble methods, can effectively solve the problem of accurately estimating stellar rotation periods, with significant implications for advancing the study of exoplanets and stellar astrophysics.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Enhancing Multivariate Time Series-based Solar Flare Prediction with Multifaceted Preprocessing and Contrastive Learning [0.9374652839580181]
Accurate solar flare prediction is crucial due to the significant risks that intense solar flares pose to astronauts, space equipment, and satellite communication systems.
Our research enhances solar flare prediction by utilizing advanced data preprocessing and classification methods.
arXiv Detail & Related papers (2024-09-21T05:00:34Z) - Detecting and Classifying Flares in High-Resolution Solar Spectra with Supervised Machine Learning [0.0]
We present a standardized procedure to classify solar flares with the aid of supervised machine learning.
Using flare data from the RHESSI mission and solar spectra from the HARPS-N instrument, we trained several supervised machine learning models.
The best-trained model achieves an average aggregate accuracy score of 0.65, and categorical accuracy scores of over 0.70 for the no-flare and weak-flare classes.
arXiv Detail & Related papers (2024-06-21T18:52:03Z) - LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring its Applications [1.4330510916280879]
LADDER is trained on the apparent magnitude data from the Pantheon Type Ia supernovae compilation.
We demonstrate applications of our method in the cosmological context, including serving as a model-independent tool for consistency checks.
arXiv Detail & Related papers (2024-01-30T14:06:09Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Towards Continually Learning Application Performance Models [1.2278517240988065]
Machine learning-based performance models are increasingly being used to build critical job scheduling and application optimization decisions.
Traditionally, these models assume that data distribution does not change as more samples are collected over time.
We develop continually learning performance models that account for the distribution drift, alleviate catastrophic forgetting, and improve generalizability.
arXiv Detail & Related papers (2023-10-25T20:48:46Z) - Improving Astronomical Time-series Classification via Data Augmentation
with Generative Adversarial Networks [1.2891210250935146]
We propose a data augmentation methodology based on Generative Adrial Networks (GANs) to generate a variety of synthetic light curves from variable stars.
The classification accuracy of variable stars is improved significantly when training with synthetic data and testing with real data.
arXiv Detail & Related papers (2022-05-13T16:39:54Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
We analyze a massive dataset of wind measured from anemometers located at 10 m height in 32 locations in Italy.
We train supervised learning algorithms using the past history of wind to predict its value at a future time.
We find that the optimal design as well as its performance vary with the location.
arXiv Detail & Related papers (2022-04-01T14:55:10Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Machine Learning Pipeline for Pulsar Star Dataset [58.720142291102135]
This work brings together some of the most common machine learning (ML) algorithms.
The objective is to make a comparison at the level of obtained results from a set of unbalanced data.
arXiv Detail & Related papers (2020-05-03T23:35:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.