Detecting and Classifying Flares in High-Resolution Solar Spectra with Supervised Machine Learning
- URL: http://arxiv.org/abs/2406.15594v1
- Date: Fri, 21 Jun 2024 18:52:03 GMT
- Title: Detecting and Classifying Flares in High-Resolution Solar Spectra with Supervised Machine Learning
- Authors: Nicole Hao, Laura Flagg, Ray Jayawardhana,
- Abstract summary: We present a standardized procedure to classify solar flares with the aid of supervised machine learning.
Using flare data from the RHESSI mission and solar spectra from the HARPS-N instrument, we trained several supervised machine learning models.
The best-trained model achieves an average aggregate accuracy score of 0.65, and categorical accuracy scores of over 0.70 for the no-flare and weak-flare classes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flares are a well-studied aspect of the Sun's magnetic activity. Detecting and classifying solar flares can inform the analysis of contamination caused by stellar flares in exoplanet transmission spectra. In this paper, we present a standardized procedure to classify solar flares with the aid of supervised machine learning. Using flare data from the RHESSI mission and solar spectra from the HARPS-N instrument, we trained several supervised machine learning models, and found that the best performing algorithm is a C-Support Vector Machine (SVC) with non-linear kernels, specifically Radial Basis Functions (RBF). The best-trained model, SVC with RBF kernels, achieves an average aggregate accuracy score of 0.65, and categorical accuracy scores of over 0.70 for the no-flare and weak-flare classes, respectively. In comparison, a blind classification algorithm would have an accuracy score of 0.33. Testing showed that the model is able to detect and classify solar flares in entirely new data with different characteristics and distributions from those of the training set. Future efforts could focus on enhancing classification accuracy, investigating the efficacy of alternative models, particularly deep learning models, and incorporating more datasets to extend the application of this framework to stars that host exoplanets.
Related papers
- Advancing Machine Learning for Stellar Activity and Exoplanet Period Rotation [0.3926357402982764]
This study applied machine learning models to estimate stellar rotation periods from corrected light curve data obtained by the NASA Kepler mission.
Traditional methods often struggle to estimate rotation periods accurately due to noise and variability in the light curve data.
We employed several machine learning algorithms, including Decision Tree, Random Forest, K-Nearest Neighbors, and Gradient Boosting, and also utilized a Voting Ensemble approach to improve prediction accuracy and robustness.
arXiv Detail & Related papers (2024-09-09T10:25:13Z) - Deep Learning and LLM-based Methods Applied to Stellar Lightcurve Classification [7.592813175419603]
We present a comprehensive evaluation of deep-learning and large language model (LLM) based models for the automatic classification of variable star light curves.
Special emphasis is placed on Cepheids, RR Lyrae, and eclipsing binaries, examining the influence of observational cadence and phase distribution on classification precision.
We unveil StarWhisper LightCurve (LC), an innovative Series comprising three LLM-based models: LLM, multimodal large language model (MLLM), and Large Audio Language Model (LALM)
arXiv Detail & Related papers (2024-04-16T17:35:25Z) - Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data [0.0]
This study proposes using generative deep learning models, specifically a Denoising Diffusion Probabilistic Model (DDPM), to create synthetic images of solar phenomena.
By employing a dataset from the AIA instrument aboard the SDO spacecraft, we aim to address the data scarcity issue.
The DDPM's performance is evaluated using cluster metrics, Frechet Inception Distance (FID), and F1-score, showcasing promising results in generating realistic solar imagery.
arXiv Detail & Related papers (2024-04-03T08:18:45Z) - Unsupervised Machine Learning for the Classification of Astrophysical
X-ray Sources [44.99833362998488]
We develop an unsupervised machine learning approach to provide probabilistic classes to Chandra Source Catalog sources.
We provide a catalog of probabilistic classes for 8,756 sources, comprising a total of 14,507 detections.
We investigate the consistency between the distribution of features among classified objects and well-established astrophysical hypotheses.
arXiv Detail & Related papers (2024-01-22T18:42:31Z) - Identifying Light-curve Signals with a Deep Learning Based Object
Detection Algorithm. II. A General Light Curve Classification Framework [0.0]
We present a novel deep learning framework for classifying light curves using a weakly supervised object detection model.
Our framework identifies the optimal windows for both light curves and power spectra automatically, and zooms in on their corresponding data.
We train our model on datasets obtained from both space-based and ground-based multi-band observations of variable stars and transients.
arXiv Detail & Related papers (2023-11-14T11:08:34Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
We classify transient noise signals (i.e.glitches) and gravitational waves in data from the Advanced LIGO detectors.
We use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset.
We also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels.
arXiv Detail & Related papers (2023-03-24T11:12:37Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Automatic Detection of Occulted Hard X-ray Flares Using Deep-Learning
Methods [0.0]
We present a concept for a machine-learning classification of hard X-ray (HXR) emissions from solar flares observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)
The model can detect occulted flares without the need for image reconstruction nor for visual inspection by experts.
Our model achieved a classification accuracy better than 90 %, and the ability for the application of the method to either event screening or for an event alert for occulted flares was successfully demonstrated.
arXiv Detail & Related papers (2021-01-27T17:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.