論文の概要: Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery
- arxiv url: http://arxiv.org/abs/2409.05500v1
- Date: Mon, 9 Sep 2024 10:52:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 15:00:05.349768
- Title: Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery
- Title(参考訳): スケーラブルで効率的な時系列因果発見のためのVarLiNGAMの最適化
- Authors: Ziyang Jiao, Ce Guo, Wayne Luk,
- Abstract要約: 因果発見は、データの因果関係を特定するように設計されている。
時系列因果発見は、時間的依存と潜在的な時間ラグの影響を考慮する必要があるため、特に困難である。
本研究は大規模データセット処理の実現可能性を大幅に改善する。
- 参考スコア(独自算出の注目度): 5.430532390358285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery is designed to identify causal relationships in data, a task that has become increasingly complex due to the computational demands of traditional methods such as VarLiNGAM, which combines Vector Autoregressive Model with Linear Non-Gaussian Acyclic Model for time series data. This study is dedicated to optimising causal discovery specifically for time series data, which is common in practical applications. Time series causal discovery is particularly challenging due to the need to account for temporal dependencies and potential time lag effects. By designing a specialised dataset generator and reducing the computational complexity of the VarLiNGAM model from \( O(m^3 \cdot n) \) to \( O(m^3 + m^2 \cdot n) \), this study significantly improves the feasibility of processing large datasets. The proposed methods have been validated on advanced computational platforms and tested across simulated, real-world, and large-scale datasets, showcasing enhanced efficiency and performance. The optimised algorithm achieved 7 to 13 times speedup compared with the original algorithm and around 4.5 times speedup compared with the GPU-accelerated version on large-scale datasets with feature sizes between 200 and 400. Our methods aim to push the boundaries of current causal discovery capabilities, making them more robust, scalable, and applicable to real-world scenarios, thus facilitating breakthroughs in various fields such as healthcare and finance.
- Abstract(参考訳): 因果発見は、時系列データにベクトル自己回帰モデルと線形非ガウス非巡回モデルを組み合わせたVarLiNGAMのような従来の手法の計算要求により、ますます複雑になっているデータ内の因果関係を特定するように設計されている。
本研究は,時系列データに特化して因果発見を最適化することを目的としている。
時系列因果発見は、時間的依存と潜在的な時間ラグの影響を考慮する必要があるため、特に困難である。
特殊化されたデータセット生成器を設計し、VarLiNGAMモデルの計算複雑性を \(O(m^3 \cdot n) \) から \(O(m^3 + m^2 \cdot n) \) に低減することにより、大規模なデータセット処理の実現可能性を大幅に改善する。
提案手法は、高度な計算プラットフォーム上で検証され、シミュレーション、実世界、大規模データセット間でテストされ、効率と性能が向上したことを示す。
最適化されたアルゴリズムは、元のアルゴリズムと比較して7倍から13倍のスピードアップを達成した。
我々の手法は、現在の因果発見能力の境界を押し上げ、より堅牢でスケーラブルで、現実のシナリオに適用できるようにし、医療や金融といった様々な分野におけるブレークスルーを促進することを目的としている。
関連論文リスト
- EffiCANet: Efficient Time Series Forecasting with Convolutional Attention [12.784289506021265]
EffiCANetは計算効率を維持しながら予測精度を向上させるように設計されている。
EffiCANetは最先端モデルに対するMAEの最大10.02%の削減を実現している。
論文 参考訳(メタデータ) (2024-11-07T12:54:42Z) - A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning [1.0709300917082865]
組込みプロセッサ上の数ショット強化学習(RL)に適した合成非構造化データを生成するために設計された分散型フローマッチングを提案する。
我々はランダムフォレストを通した特徴重み付けを重要データ面の優先順位付けに適用し,生成した合成データの精度を向上させる。
本手法は,最初期の第1タイムスタンプにおいて,フレームレートを30%向上しながら,最大Q値に基づく安定収束を提供する。
論文 参考訳(メタデータ) (2024-09-21T15:50:59Z) - AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs [57.12929098407975]
既存の因果探索法を効率的に並列化することにより,数千次元まで拡張可能であることを示す。
具体的には、DirectLiNGAMの因果順序付けサブプロデューサに着目し、GPUカーネルを実装して高速化する。
これにより、遺伝子介入による大規模遺伝子発現データに対する因果推論にDirectLiNGAMを適用することで、競争結果が得られる。
論文 参考訳(メタデータ) (2024-03-06T15:06:11Z) - Decreasing the Computing Time of Bayesian Optimization using
Generalizable Memory Pruning [56.334116591082896]
本稿では,任意のサロゲートモデルと取得関数で使用可能なメモリプルーニングとバウンダリ最適化のラッパーを示す。
BOを高次元または大規模データセット上で実行することは、この時間の複雑さのために難解になる。
すべてのモデル実装はMIT Supercloudの最先端コンピューティングハードウェア上で実行される。
論文 参考訳(メタデータ) (2023-09-08T14:05:56Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Toeplitz Least Squares Problems, Fast Algorithms and Big Data [1.3535770763481905]
最近の2つのアルゴリズムは、大容量時系列データに自己回帰モデルを適用するためにランダム化された数値線形代数手法を適用している。
本研究では,これら2つの近似アルゴリズムの大規模合成データと実世界のデータの品質について検討・比較する。
両方のアルゴリズムは合成データセットに匹敵する結果を示すが、実世界の時系列データに適用するとLSARアルゴリズムはより堅牢であるように見える。
論文 参考訳(メタデータ) (2021-12-24T08:32:09Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。