論文の概要: Toeplitz Least Squares Problems, Fast Algorithms and Big Data
- arxiv url: http://arxiv.org/abs/2112.12994v1
- Date: Fri, 24 Dec 2021 08:32:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-29 14:33:01.215867
- Title: Toeplitz Least Squares Problems, Fast Algorithms and Big Data
- Title(参考訳): Toeplitzの最小二乗問題,高速アルゴリズム,ビッグデータ
- Authors: Ali Eshragh, Oliver Di Pietro and Michael A. Saunders
- Abstract要約: 最近の2つのアルゴリズムは、大容量時系列データに自己回帰モデルを適用するためにランダム化された数値線形代数手法を適用している。
本研究では,これら2つの近似アルゴリズムの大規模合成データと実世界のデータの品質について検討・比較する。
両方のアルゴリズムは合成データセットに匹敵する結果を示すが、実世界の時系列データに適用するとLSARアルゴリズムはより堅牢であるように見える。
- 参考スコア(独自算出の注目度): 1.3535770763481905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In time series analysis, when fitting an autoregressive model, one must solve
a Toeplitz ordinary least squares problem numerous times to find an appropriate
model, which can severely affect computational times with large data sets. Two
recent algorithms (LSAR and Repeated Halving) have applied randomized numerical
linear algebra (RandNLA) techniques to fitting an autoregressive model to big
time-series data. We investigate and compare the quality of these two
approximation algorithms on large-scale synthetic and real-world data. While
both algorithms display comparable results for synthetic datasets, the LSAR
algorithm appears to be more robust when applied to real-world time series
data. We conclude that RandNLA is effective in the context of big-data time
series.
- Abstract(参考訳): 時系列解析では、自己回帰モデルに適合する場合は、Toeplitz の通常の最小二乗問題を何度も解いて適切なモデルを見つけなければならない。
最近の2つのアルゴリズム(lsarと反復半減法)はランダム化数値線形代数学(randnla)技術を適用し、大きな時系列データに自己回帰モデルを適用している。
本研究では,これら2つの近似アルゴリズムの品質を大規模合成データと実世界データで比較検討した。
両方のアルゴリズムは合成データセットに匹敵する結果を示すが、実世界の時系列データに適用するとLSARアルゴリズムはより堅牢であるように見える。
randnlaはビッグデータ時系列の文脈において有効であると結論づける。
関連論文リスト
- Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery [5.430532390358285]
因果発見は、データの因果関係を特定するように設計されている。
時系列因果発見は、時間的依存と潜在的な時間ラグの影響を考慮する必要があるため、特に困難である。
本研究は大規模データセット処理の実現可能性を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-09T10:52:58Z) - SALSA: Sequential Approximate Leverage-Score Algorithm with Application
in Analyzing Big Time Series Data [46.42365692992566]
ランダム化された数値線形代数の手法を用いて,効率的な逐次近似レバレッジスコアアルゴリズム(SALSA)を開発した。
SALSAの理論的計算複雑性と数値的精度が既存の近似を超えていることが示される。
提案アルゴリズムは高い確率で,真の基礎となるARMAモデルのパラメータの最大推定値を求めることを保証している。
論文 参考訳(メタデータ) (2023-12-30T02:36:53Z) - Making RL with Preference-based Feedback Efficient via Randomization [11.019088464664696]
人間のフィードバックから学習する強化学習アルゴリズムは、統計複雑性、計算複雑性、クエリ複雑性の点で効率的である必要がある。
提案するアルゴリズムは, サンプル効率のよいアルゴリズム(すなわち, ほぼ最適ケースの後悔境界)と実行時間(すなわち, 関連するパラメータに関して計算複雑性が最悪の場合)を提案する。
結果をより一般的な非線形関数近似に拡張するために、トンプソンサンプリングのアイデアに触発されたモデルベースランダム化アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-10-23T04:19:35Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Ranking with Confidence for Large Scale Comparison Data [1.2183405753834562]
本研究では、比較ノイズを考慮した生成データモデルを用いて、ペア比較から高速で正確で情報的なランク付けを行う。
実データでは、PD-Rankは、アクティブな学習方法よりも同じKendallアルゴリズムを達成するのに、計算時間が少ない。
論文 参考訳(メタデータ) (2022-02-03T16:36:37Z) - SreaMRAK a Streaming Multi-Resolution Adaptive Kernel Algorithm [60.61943386819384]
既存のKRRの実装では、すべてのデータがメインメモリに格納される必要がある。
KRRのストリーミング版であるStreaMRAKを提案する。
本稿では,2つの合成問題と2重振り子の軌道予測について紹介する。
論文 参考訳(メタデータ) (2021-08-23T21:03:09Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
時系列データは多くの領域で爆発的な速度で成長し、時系列モデリング研究の急増を刺激している。
データ希少性は、膨大なデータ分析の問題で発生する普遍的な問題です。
論文 参考訳(メタデータ) (2021-03-16T22:16:54Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
乗算重み更新法に基づいて,Klivans と Meka のアルゴリズムを適用した。
アルゴリズムは、文献の他のものと質的に類似したサンプル複雑性境界を楽しみます。
ランタイムが低い$O(mp2)$で、$m$サンプルと$p$ノードの場合には、簡単にオンライン形式で実装できる。
論文 参考訳(メタデータ) (2020-02-20T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。