A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning
- URL: http://arxiv.org/abs/2409.14178v1
- Date: Sat, 21 Sep 2024 15:50:59 GMT
- Title: A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning
- Authors: Mohammad Pivezhandi, Abusayeed Saifullah,
- Abstract summary: We introduce a distribution-aware flow matching, designed to generate synthetic unstructured data tailored for few-shot reinforcement learning (RL) on embedded processors.
We apply feature weighting through Random Forests to prioritize critical data aspects, thereby improving the precision of the generated synthetic data.
Our method provides a stable convergence based on max Q-value while enhancing frame rate by 30% in the very beginning first timestamps.
- Score: 1.0709300917082865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating realistic and diverse unstructured data is a significant challenge in reinforcement learning (RL), particularly in few-shot learning scenarios where data is scarce. Traditional RL methods often rely on extensive datasets or simulations, which are costly and time-consuming. In this paper, we introduce a distribution-aware flow matching, designed to generate synthetic unstructured data tailored specifically for an application of few-shot RL called Dynamic Voltage and Frequency Scaling (DVFS) on embedded processors. This method leverages the sample efficiency of flow matching and incorporates statistical learning techniques such as bootstrapping to improve its generalization and robustness of the latent space. Additionally, we apply feature weighting through Random Forests to prioritize critical data aspects, thereby improving the precision of the generated synthetic data. This approach not only mitigates the challenges of overfitting and data correlation in unstructured data in traditional Model-Based RL but also aligns with the Law of Large Numbers, ensuring convergence to true empirical values and optimal policy as the number of samples increases. Through extensive experimentation on an application of DVFS for low energy processing, we demonstrate that our method provides an stable convergence based on max Q-value while enhancing frame rate by 30\% in the very beginning first timestamps, making this RL model efficient in resource-constrained environments.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery [5.430532390358285]
Causal discovery is designed to identify causal relationships in data.
Time series causal discovery is particularly challenging due to the need to account for temporal dependencies and potential time lag effects.
This study significantly improves the feasibility of processing large datasets.
arXiv Detail & Related papers (2024-09-09T10:52:58Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
patio-temporal forecasting is crucial in transportation, logistics, and supply chain management.
We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models.
Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security.
arXiv Detail & Related papers (2024-08-24T16:32:58Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Hybrid State Space-based Learning for Sequential Data Prediction with
Joint Optimization [0.0]
We introduce a hybrid model that mitigates, via a joint mechanism, the need for domain-specific feature engineering issues of conventional nonlinear prediction models.
We achieve this by introducing novel state space representations for the base models, which are then combined to provide a full state space representation of the hybrid or the ensemble.
Due to such novel combination and joint optimization, we demonstrate significant improvements in widely publicized real life competition datasets.
arXiv Detail & Related papers (2023-09-19T12:00:28Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Towards Synthetic Multivariate Time Series Generation for Flare
Forecasting [5.098461305284216]
One of the limiting factors in training data-driven, rare-event prediction algorithms is the scarcity of the events of interest.
In this study, we explore the usefulness of the conditional generative adversarial network (CGAN) as a means to perform data-informed oversampling.
arXiv Detail & Related papers (2021-05-16T22:23:23Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.