A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning
- URL: http://arxiv.org/abs/2409.14178v1
- Date: Sat, 21 Sep 2024 15:50:59 GMT
- Title: A Distribution-Aware Flow-Matching for Generating Unstructured Data for Few-Shot Reinforcement Learning
- Authors: Mohammad Pivezhandi, Abusayeed Saifullah,
- Abstract summary: We introduce a distribution-aware flow matching, designed to generate synthetic unstructured data tailored for few-shot reinforcement learning (RL) on embedded processors.
We apply feature weighting through Random Forests to prioritize critical data aspects, thereby improving the precision of the generated synthetic data.
Our method provides a stable convergence based on max Q-value while enhancing frame rate by 30% in the very beginning first timestamps.
- Score: 1.0709300917082865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating realistic and diverse unstructured data is a significant challenge in reinforcement learning (RL), particularly in few-shot learning scenarios where data is scarce. Traditional RL methods often rely on extensive datasets or simulations, which are costly and time-consuming. In this paper, we introduce a distribution-aware flow matching, designed to generate synthetic unstructured data tailored specifically for an application of few-shot RL called Dynamic Voltage and Frequency Scaling (DVFS) on embedded processors. This method leverages the sample efficiency of flow matching and incorporates statistical learning techniques such as bootstrapping to improve its generalization and robustness of the latent space. Additionally, we apply feature weighting through Random Forests to prioritize critical data aspects, thereby improving the precision of the generated synthetic data. This approach not only mitigates the challenges of overfitting and data correlation in unstructured data in traditional Model-Based RL but also aligns with the Law of Large Numbers, ensuring convergence to true empirical values and optimal policy as the number of samples increases. Through extensive experimentation on an application of DVFS for low energy processing, we demonstrate that our method provides an stable convergence based on max Q-value while enhancing frame rate by 30\% in the very beginning first timestamps, making this RL model efficient in resource-constrained environments.
Related papers
- Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.
Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
patio-temporal forecasting plays a crucial role in various sectors such as transportation systems, logistics, and supply chain management.
We introduce a hybrid approach that combines the strengths of open-source large and small-scale language models (LLMs and LMs) with traditional forecasting methods.
arXiv Detail & Related papers (2024-08-26T16:11:53Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
patio-temporal forecasting is crucial in transportation, logistics, and supply chain management.
We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models.
Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security.
arXiv Detail & Related papers (2024-08-24T16:32:58Z) - Borrowing Strength in Distributionally Robust Optimization via Hierarchical Dirichlet Processes [35.53901341372684]
Our approach unifies regularized estimation, distributionally robust optimization, and hierarchical Bayesian modeling.
By employing a hierarchical Dirichlet process (HDP) prior, the method effectively handles multi-source data.
Numerical experiments validate the framework's efficacy in improving and stabilizing both prediction and parameter estimation accuracy.
arXiv Detail & Related papers (2024-05-21T19:03:09Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
This paper presents an empirical study to build relation extraction systems in low-resource settings.
We investigate three schemes to evaluate the performance in low-resource settings: (i) different types of prompt-based methods with few-shot labeled data; (ii) diverse balancing methods to address the long-tailed distribution issue; and (iii) data augmentation technologies and self-training to generate more labeled in-domain data.
arXiv Detail & Related papers (2022-10-19T15:46:37Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Federated Ensemble Model-based Reinforcement Learning in Edge Computing [21.840086997141498]
Federated learning (FL) is a privacy-preserving distributed machine learning paradigm.
We propose a novel FRL algorithm that effectively incorporates model-based RL and ensemble knowledge distillation into FL for the first time.
Specifically, we utilise FL and knowledge distillation to create an ensemble of dynamics models for clients, and then train the policy by solely using the ensemble model without interacting with the environment.
arXiv Detail & Related papers (2021-09-12T16:19:10Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
This research project focuses on the use of autoencoders networks to construct a continuous parameterization for facies models.
We benchmark seven different formulations, including VAE, generative adversarial network (GAN), Wasserstein GAN, variational auto-encoding GAN, principal component analysis (PCA) with cycle GAN, PCA with transfer style network and VAE with style loss.
arXiv Detail & Related papers (2020-05-08T21:32:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.