論文の概要: SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
- arxiv url: http://arxiv.org/abs/2409.05556v1
- Date: Mon, 9 Sep 2024 12:25:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 14:50:09.453527
- Title: SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
- Title(参考訳): SciAgents:マルチエージェント・インテリジェントグラフ推論による科学的発見の自動化
- Authors: Alireza Ghafarollahi, Markus J. Buehler,
- Abstract要約: 人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.
- Abstract(参考訳): 人工知能の鍵となる課題は、新しいドメインを探索し、複雑なパターンを識別し、これまで目に見えなかった膨大な科学的データとのつながりを明らかにすることによって、科学的理解を自律的に進めるシステムを作ることである。
本研究では,(1)多様な科学的概念を整理・相互接続するための大規模存在論的知識グラフの利用,(2)大規模言語モデル(LLM)とデータ検索ツールのスイート,(3)その場学習機能を備えたマルチエージェントシステム,の3つの中核概念を活用するアプローチであるSciAgentsを提案する。
SciAgentsは、生物学的にインスピレーションを受けた物質に適用し、以前は無関係と考えられていた隠された学際的な関係を明らかにし、従来の人間による研究手法を超越したスケール、精度、探索力を達成した。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
これらの機能をモジュール形式で統合することにより、インテリジェントシステムは、物質発見、批判、既存の仮説を改善し、既存の研究に関する最新のデータを取得し、その強みと限界を強調します。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせたスケーラブルな能力を示し、生物学的システムと同じような「知性の短絡」を活用している。
これにより、材料発見のための新たな道が開かれ、自然のデザイン原則を解き放つことにより、先進的な材料の開発が加速される。
関連論文リスト
- MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration [13.689620109856783]
我々はMatPilotという名のAI材料科学者を開発し、新しい素材の発見を奨励する能力を示した。
MatPilotのコアとなる強みは、自然言語で対話的な人間と機械のコラボレーションだ。
MatPilotは、ユニークな認知能力、豊富な蓄積された経験、そして人間の生活の好奇心を統合している。
論文 参考訳(メタデータ) (2024-11-10T12:23:44Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
我々は「AI科学者」を懐疑的な学習と推論が可能なシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析するAIの能力を組み合わせる。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-04-03T16:08:01Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
幾何戦略の有効性をベンチマークできるGeom3Dというプラットフォームを提案する。
Geom3Dは16の高度な対称性インフォームド幾何表現モデルと46の多様なデータセット上の14の幾何事前学習方法を含んでいる。
論文 参考訳(メタデータ) (2023-06-15T05:37:25Z) - AI Research Associate for Early-Stage Scientific Discovery [1.6861004263551447]
人工知能(AI)は科学活動に何十年も使われ続けている。
我々は、最小バイアスの物理に基づくモデリングに基づく、初期段階の科学的発見のためのAI研究アソシエイトを提案する。
論文 参考訳(メタデータ) (2022-02-02T17:05:52Z) - Simulation Intelligence: Towards a New Generation of Scientific Methods [81.75565391122751]
シミュレーション知能の9つのモチーフ」は、科学計算、科学シミュレーション、人工知能の融合に必要な重要なアルゴリズムの開発と統合のためのロードマップである。
シミュレーションインテリジェンスのモチーフは、オペレーティングシステムのレイヤ内のコンポーネントとよく似ています。
我々は、モチーフ間の協調的な努力が科学的な発見を加速する大きな機会をもたらすと信じている。
論文 参考訳(メタデータ) (2021-12-06T18:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。