論文の概要: Empowering Biomedical Discovery with AI Agents
- arxiv url: http://arxiv.org/abs/2404.02831v2
- Date: Wed, 24 Jul 2024 20:31:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 19:07:19.707813
- Title: Empowering Biomedical Discovery with AI Agents
- Title(参考訳): AIエージェントによるバイオメディカルディスカバリの強化
- Authors: Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard Schwarz, Yasha Ektefaie, Jovana Kondic, Marinka Zitnik,
- Abstract要約: 我々は「AI科学者」を懐疑的な学習と推論が可能なシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析するAIの能力を組み合わせる。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
- 参考スコア(独自算出の注目度): 15.125735219811268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We envision "AI scientists" as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents that integrate AI models and biomedical tools with experimental platforms. Rather than taking humans out of the discovery process, biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets, navigate hypothesis spaces, and execute repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and performing self-assessment to identify and mitigate gaps in their knowledge. These agents use large language models and generative models to feature structured memory for continual learning and use machine learning tools to incorporate scientific knowledge, biological principles, and theories. AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
- Abstract(参考訳): 我々は「AI科学者」を、AIモデルとバイオメディカルツールを実験プラットフォームに統合する協調エージェントを通じて、生物医学研究を促進する懐疑的な学習と推論のシステムとして想定する。
バイオメディカルAIエージェントは、人間の創造性と専門知識と、大規模なデータセットを分析し、仮説空間をナビゲートし、反復的なタスクを実行するAIの能力を組み合わせる。
AIエージェントは、さまざまなタスクに精通し、発見ワークフローを計画し、知識のギャップを特定し緩和するために自己評価を行う。
これらのエージェントは、大きな言語モデルと生成モデルを使用して、継続的な学習のために構造化された記憶を特徴付け、科学知識、生物学的原理、理論を組み込むために機械学習ツールを使用する。
AIエージェントは、仮想細胞シミュレーション、プログラム可能な表現型の制御、細胞回路の設計、新しい治療法の開発など、幅広い領域に影響を与える可能性がある。
関連論文リスト
- MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration [13.689620109856783]
我々はMatPilotという名のAI材料科学者を開発し、新しい素材の発見を奨励する能力を示した。
MatPilotのコアとなる強みは、自然言語で対話的な人間と機械のコラボレーションだ。
MatPilotは、ユニークな認知能力、豊富な蓄積された経験、そして人間の生活の好奇心を統合している。
論文 参考訳(メタデータ) (2024-11-10T12:23:44Z) - How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities [46.671834972945874]
仮想セル構築にAIの進歩を活用するというビジョンを提案する。
我々は、生物の普遍的な表現を含む、そのようなAI仮想セルの望ましい能力について議論する。
我々は、AI仮想細胞が新しい薬物標的を特定し、摂動に対する細胞反応を予測し、スケール仮説を探索する未来を想像する。
論文 参考訳(メタデータ) (2024-09-18T02:41:50Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
論文 参考訳(メタデータ) (2024-09-09T12:25:10Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
そこで,BioDiscoveryAgentを紹介した。このエージェントは,新しい実験を設計し,その結果の理由を明らかにし,仮説空間を効率的にナビゲートし,望ましい解に到達させる。
BioDiscoveryAgentは、機械学習モデルをトレーニングすることなく、新しい実験を独自に設計することができる。
6つのデータセットで関連する遺伝的摂動を予測することで、平均21%の改善が達成されている。
論文 参考訳(メタデータ) (2024-05-27T19:57:17Z) - EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications [0.2826977330147589]
機械学習モデルの事前処理、トレーニング、評価、可視化が可能なWebベースのエンドツーエンドパイプラインを提案する。
本ライブラリは,マルチモーダル・マルチセンサ・データセットの認識,分類,クラスタリング,および予測を支援する。
論文 参考訳(メタデータ) (2024-03-27T02:24:38Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - Automated Biodesign Engineering by Abductive Meta-Interpretive Learning [8.788941848262786]
Abductive Meta-Interpretive Learning($Meta_Abd$)を活用した自動バイオデザインエンジニアリングフレームワークを提案します。
本稿では,Abductive Meta-Interpretive Learning(Meta_Abd$)を活用したバイオデザイン自動工学フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-17T12:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。