論文の概要: Preparing Schrödinger cat states in a microwave cavity using a neural network
- arxiv url: http://arxiv.org/abs/2409.05557v1
- Date: Mon, 9 Sep 2024 12:28:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-10 14:50:09.450610
- Title: Preparing Schrödinger cat states in a microwave cavity using a neural network
- Title(参考訳): ニューラルネットワークを用いたマイクロ波空洞におけるシュレーディンガー猫状態の調製
- Authors: Hector Hutin, Pavlo Bilous, Chengzhi Ye, Sepideh Abdollahi, Loris Cros, Tom Dvir, Tirth Shah, Yonatan Cohen, Audrey Bienfait, Florian Marquardt, Benjamin Huard,
- Abstract要約: 量子状態全体に対して最適化された制御パルスを出力するようにニューラルネットワークに教えることが可能であることを示す。
結果は、ディープニューラルネットワークとトランスファーラーニングが、様々な量子制御タスクに対する効率的な同時解をいかに生み出すかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling up quantum computing devices requires solving ever more complex quantum control tasks. Machine learning has been proposed as a promising approach to tackle the resulting challenges. However, experimental implementations are still scarce. In this work, we demonstrate experimentally a neural-network-based preparation of Schr\"odinger cat states in a cavity coupled dispersively to a qubit. We show that it is possible to teach a neural network to output optimized control pulses for a whole family of quantum states. After being trained in simulations, the network takes a description of the target quantum state as input and rapidly produces the pulse shape for the experiment, without any need for time-consuming additional optimization or retraining for different states. Our experimental results demonstrate more generally how deep neural networks and transfer learning can produce efficient simultaneous solutions to a range of quantum control tasks, which will benefit not only state preparation but also parametrized quantum gates.
- Abstract(参考訳): 量子コンピューティングデバイスのスケールアップには、より複雑な量子制御タスクの解決が必要である。
機械学習は、結果として生じる課題に取り組むための有望なアプローチとして提案されている。
しかし、まだ実験的な実装は少ない。
本研究では, 量子ビットに分散的に結合したキャビティ内において, ニューラルネットワークによるSchr\"odinger cat状態の調製実験を行った。
量子状態全体に対して最適化された制御パルスを出力するようにニューラルネットワークに教えることが可能であることを示す。
シミュレーションのトレーニングを受けた後、ネットワークはターゲットの量子状態を入力として記述し、異なる状態に対する追加の最適化や再トレーニングを必要とせずに、実験のためのパルス形状を迅速に生成する。
我々の実験結果は、ディープニューラルネットワークとトランスファーラーニングが、様々な量子制御タスクに対して、いかに効率的に同時解を生成できるかをより一般的に示しており、状態準備だけでなく、パラメタライズド量子ゲートにも恩恵をもたらすだろう。
関連論文リスト
- Training-efficient density quantum machine learning [2.918930150557355]
量子機械学習は強力でフレキシブルで効率的にトレーニング可能なモデルを必要とする。
トレーニング可能なユニタリの集合にランダム化を組み込んだ学習モデルである密度量子ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-30T16:40:28Z) - Echo-evolution data generation for quantum error mitigation via neural
networks [0.0]
本稿では,ニューラルネットワークによる量子エラー軽減のためのトレーニングデータを生成する物理動機付け手法を提案する。
この方法では、初期状態は前後に進化し、進化の終わりに初期状態に戻る。
我々は、エコー進化生成データに基づいてトレーニングされたフィードフォワード完全連結ニューラルネットワークが、フォワード・イン・タイム進化の結果を補正できることを実証した。
論文 参考訳(メタデータ) (2023-11-01T12:40:10Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
本研究では、リソース制約のあるデバイスを意図した軽量で強力なモデルであるバイナリニューラルネットワークについて検討する。
トレーニング問題に対する2次非制約バイナリ最適化の定式化を考案する。
問題は難解であり、すなわち、二分重みを推定するコストはネットワークサイズと指数関数的にスケールするが、どのようにして問題を量子アニール器に直接最適化できるかを示す。
論文 参考訳(メタデータ) (2021-07-05T03:20:54Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
この研究は、包括的でカスタマイズ可能な量子ネットワークシミュレータであるSeQUeNCeを開発した。
本研究では,9つのルータに量子メモリを具備したフォトニック量子ネットワークをシミュレートし,SeQUeNCeの利用を実証する。
オープンソースツールとしてSeQUeNCeをリリースしています。
論文 参考訳(メタデータ) (2020-09-25T01:52:15Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z) - Quantum implementation of an artificial feed-forward neural network [0.0]
本研究では,最先端の超伝導量子プロセッサ上に実装された人工フィードフォワードニューラルネットワークを実験的に実現した。
このネットワークは量子人工ニューロンで構成されており、記憶容量の潜在的な利点を個別に示す。
このネットワークは、古典的な制御か、完全に一貫性のある方法で等価に動作可能であることを実証する。
論文 参考訳(メタデータ) (2019-12-28T16:49:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。