Distance-preserving stabilizer measurements in hypergraph product codes
- URL: http://arxiv.org/abs/2308.15520v2
- Date: Tue, 28 Jan 2025 00:54:19 GMT
- Title: Distance-preserving stabilizer measurements in hypergraph product codes
- Authors: Argyris Giannisis Manes, Jahan Claes,
- Abstract summary: We show that a family of finite-rate QLDPC codes, hypergraph product codes, has the convenient property of distance-robustness.<n>In particular, we prove the depth-optimal circuit in [Tremblay et al, PRL 129, 050504 (2022) is also optimal in terms of effective distance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unlike the surface code, quantum low-density parity-check (QLDPC) codes can have a finite encoding rate, potentially lowering the error correction overhead. However, finite-rate QLDPC codes have nonlocal stabilizers, making it difficult to design stabilizer measurement circuits that are low-depth and do not decrease the effective distance. Here, we demonstrate that a popular family of finite-rate QLDPC codes, hypergraph product codes, has the convenient property of distance-robustness: any stabilizer measurement circuit preserves the effective distance. In particular, we prove the depth-optimal circuit in [Tremblay et al, PRL 129, 050504 (2022)] is also optimal in terms of effective distance.
Related papers
- Non-local resources for error correction in quantum LDPC codes [0.0]
Surface code suffers from a low encoding rate, requiring a vast number of physical qubits for large-scale quantum computation.
hypergraph product codes present a promising alternative, as both their encoding rate and distance scale with block size.
Recent advancements have shown how to deterministically perform high-fidelity cavity enabled non-local many-body gates.
arXiv Detail & Related papers (2024-09-09T17:28:41Z) - Effective Distance of Higher Dimensional HGPs and Weight-Reduced Quantum LDPC Codes [0.0]
We show that there exists single-ancilla syndrome extraction circuits that largely preserve the effective distance of the weight-reduced qLDPC codes.
As a corollary, our result shows that higher-dimensional hypergraph product codes have no troublesome hook errors when using any single-ancilla syndrome extraction circuit.
arXiv Detail & Related papers (2024-09-03T18:02:33Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
We propose SPARE, a novel formulation that utilizes a symmetrized point-to-plane distance for robust non-rigid registration.
The proposed method greatly improves the accuracy of non-rigid registration problems and maintains relatively high solution efficiency.
arXiv Detail & Related papers (2024-05-30T15:55:04Z) - Improved Noisy Syndrome Decoding of Quantum LDPC Codes with Sliding
Window [0.0]
We study sliding-window decoding, which corrects errors from previous syndrome measurement rounds while leaving the most recent errors for future correction.
Remarkably, we find that this improvement may not cost a larger decoding complexity.
arXiv Detail & Related papers (2023-11-06T17:56:49Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - An efficient decoder for a linear distance quantum LDPC code [0.1657441317977376]
We present a linear time decoder for the recent quantumally good qLDPC codes.
Our decoder is an iterative algorithm which searches for corrections within constant-sized regions.
arXiv Detail & Related papers (2022-06-14T02:17:09Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Good quantum LDPC codes with linear time decoder from lossless expanders [14.823143667165382]
Quantum low-density parity-check (qLDPC) codes are quantum stabilizer codes.
We study qLDPC codes constructed from balanced products and lossless expanders.
arXiv Detail & Related papers (2022-03-07T18:30:45Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.