Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models
- URL: http://arxiv.org/abs/2410.23111v2
- Date: Thu, 31 Oct 2024 11:16:46 GMT
- Title: Why Gradient Subspace? Identifying and Mitigating LoRA's Bottlenecks in Federated Fine-Tuning of Large Language Models
- Authors: Navyansh Mahla, Ganesh Ramakrishnan,
- Abstract summary: This paper critically analyzes the convergence and performance guarantees of popular FL frameworks utilizing Low-Rank Adaptation (LoRA)
We demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models.
Our findings show that GaLore is a more effective alternative, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities.
- Score: 21.953204885495573
- License:
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains, particularly in task generalization for both text and vision data. While fine-tuning these models can significantly enhance their performance on specific downstream tasks, it often requires high-quality data that cannot be shared due to privacy concerns. Federated Learning (FL) offers a promising solution for collaborative training without direct data sharing. However, many parameter-efficient fine-tuning strategies for LLMs in FL, particularly those based on Low-Rank Adaptation (LoRA), face limitations. In this paper, we critically analyze the convergence and performance guarantees of popular FL frameworks utilizing LoRA, highlighting its suboptimal nature due to constrained subspace learning of low-rank matrices. This limitation hinders effective fine-tuning of LLMs in federated settings. Through rigorous analytical and empirical evaluations, we demonstrate that direct weight averaging outperforms LoRA-based strategies, leading to superior performance for fine-tuned models. Our comprehensive comparison exposes inefficiencies in LoRA approaches and underscores the advantages of direct weight aggregation. We extend our analysis to low-rank gradient-based optimizers, such as GaLore, used during local training steps. Our findings show that GaLore is a more effective alternative, outperforming federated LoRA methods like FlexLoRA and FFA-LoRA across both text and image modalities. While privacy remains paramount in FL discourse, our focus is on assessing performance outcomes of federated fine-tuned models and evaluating various FL frameworks from both theoretical and empirical perspectives. Our findings advocate reassessing the reliance on LoRA within FL contexts, paving the way for more efficient training methodologies.
Related papers
- LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement [5.162783756846019]
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning.
Low-Rank Adaptation (LoRA) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters.
LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2024-11-22T14:19:01Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models [5.1613368481802455]
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models.
We propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix.
Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency.
arXiv Detail & Related papers (2024-10-12T08:22:44Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low-Rank Adaptations [39.88985198467528]
We introduce a new approach called FLORA that enables federated fine-tuning on heterogeneous LoRA adapters.
Our approach is noise-free and seamlessly supports heterogeneous LoRA adapters.
arXiv Detail & Related papers (2024-09-09T18:21:23Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models.
Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning.
We introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of low-rank matrices.
arXiv Detail & Related papers (2024-07-25T17:57:12Z) - Mixture of LoRA Experts [87.50120181861362]
This paper introduces the Mixture of LoRA Experts (MoLE) approach, which harnesses hierarchical control and unfettered branch selection.
The MoLE approach achieves superior LoRA fusion performance in comparison to direct arithmetic merging.
arXiv Detail & Related papers (2024-04-21T11:59:53Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.