Deep Generative Model for Mechanical System Configuration Design
- URL: http://arxiv.org/abs/2409.06016v2
- Date: Thu, 26 Sep 2024 00:44:54 GMT
- Title: Deep Generative Model for Mechanical System Configuration Design
- Authors: Yasaman Etesam, Hyunmin Cheong, Mohammadmehdi Ataei, Pradeep Kumar Jayaraman,
- Abstract summary: We propose a deep generative model to predict the optimal combination of components and interfaces for a given design problem.
We then train a Transformer using this dataset, named GearFormer, which can generate quality solutions on its own.
We show that GearFormer outperforms search methods on their own in terms of satisfying the specified design requirements.
- Score: 3.2194137462952126
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Generative AI has made remarkable progress in addressing various design challenges. One prominent area where generative AI could bring significant value is in engineering design. In particular, selecting an optimal set of components and their interfaces to create a mechanical system that meets design requirements is one of the most challenging and time-consuming tasks for engineers. This configuration design task is inherently challenging due to its categorical nature, multiple design requirements a solution must satisfy, and the reliance on physics simulations for evaluating potential solutions. These characteristics entail solving a combinatorial optimization problem with multiple constraints involving black-box functions. To address this challenge, we propose a deep generative model to predict the optimal combination of components and interfaces for a given design problem. To demonstrate our approach, we solve a gear train synthesis problem by first creating a synthetic dataset using a grammar, a parts catalogue, and a physics simulator. We then train a Transformer using this dataset, named GearFormer, which can not only generate quality solutions on its own, but also augment search methods such as an evolutionary algorithm and Monte Carlo tree search. We show that GearFormer outperforms such search methods on their own in terms of satisfying the specified design requirements with orders of magnitude faster generation time. Additionally, we showcase the benefit of hybrid methods that leverage both GearFormer and search methods, which further improve the quality of the solutions.
Related papers
- Towards Automated Model Design on Recommender Systems [21.421326082345136]
We introduce a novel paradigm that utilizes weight sharing to explore abundant solution spaces.
From a co-design perspective, we achieve 2x FLOPs efficiency, 1.8x energy efficiency, and 1.5x performance improvements in recommender models.
arXiv Detail & Related papers (2024-11-12T06:03:47Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Automated Placement of Analog Integrated Circuits using Priority-based Constructive Heuristic [0.0]
We focus on the specific class of analog placement, which requires so-called pockets, their possible merging, and parametrizable minimum distances between devices.
Our solution minimizes the perimeter of the circuit's bounding box and the approximated wire length.
We show the quality of the proposed method on both synthetically generated and real-life industrial instances accompanied by manually created designs.
arXiv Detail & Related papers (2024-10-18T07:16:59Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
We introduce a design optimization method based on Generalized Differential Evolution 3 (GDE3) and Gaussian Processes (GPs)
The proposed method is able to perform sizing for complex circuits with a large number of design variables and many conflicting objectives to be optimized.
We evaluate the introduced method on two voltage regulators showing different levels of complexity.
arXiv Detail & Related papers (2022-06-06T06:48:45Z) - Fast Feature Selection with Fairness Constraints [49.142308856826396]
We study the fundamental problem of selecting optimal features for model construction.
This problem is computationally challenging on large datasets, even with the use of greedy algorithm variants.
We extend the adaptive query model, recently proposed for the greedy forward selection for submodular functions, to the faster paradigm of Orthogonal Matching Pursuit for non-submodular functions.
The proposed algorithm achieves exponentially fast parallel run time in the adaptive query model, scaling much better than prior work.
arXiv Detail & Related papers (2022-02-28T12:26:47Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Generative Design by Reinforcement Learning: Enhancing the Diversity of
Topology Optimization Designs [5.8010446129208155]
This study proposes a reinforcement learning based generative design process, with reward functions maximizing the diversity of topology designs.
We show that RL-based generative design produces a large number of diverse designs within a short inference time by exploiting GPU in a fully automated manner.
arXiv Detail & Related papers (2020-08-17T06:50:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.