Comparing One- and Two-way Quantum Repeater Architectures
- URL: http://arxiv.org/abs/2409.06152v1
- Date: Tue, 10 Sep 2024 01:55:01 GMT
- Title: Comparing One- and Two-way Quantum Repeater Architectures
- Authors: Prateek Mantri, Kenneth Goodenough, Don Towsley,
- Abstract summary: Quantum repeaters are an essential building block for realizing long-distance quantum communications.
Due to the fragile nature of quantum information, these repeaters suffer from loss and operational errors.
Recent increases in the number of available memories, and introduction of entanglement generation through multiplexing motivate a re-comparison of one-way and two-way repeater architectures.
- Score: 9.942288691108914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum repeaters are an essential building block for realizing long-distance quantum communications. However, due to the fragile nature of quantum information, these repeaters suffer from loss and operational errors. Prior works have classified repeaters into three broad categories based on their use of probabilistic or near-deterministic methods to mitigate these errors. Besides differences in classical communication times, these approaches also vary in technological complexity, with near-deterministic methods requiring more advanced technology. Recent increases in the number of available memories, and introduction of entanglement generation through multiplexing motivate a re-comparison of one-way and two-way repeater architectures. In this work, we propose a novel protocol that optimizes multiplexed elementary link generation and distillation in memory-unconstrained 'connection-oriented' two-way repeaters to boost the entanglement generation rates. We introduce a recursive formulation to derive the probability distribution of the number of Bell pairs in multiplexed two-way repeater architectures, compatible with probabilistic $n$-to-$k$ distillation protocols. We then compare the performance of this new protocol with one-way schemes in the parameter regime where one-way schemes have previously been shown to be advantageous, and find that the multiplexed two-way protocol provides better performance with lower resource and technology requirements.
Related papers
- Asynchronous Entanglement Routing for the Quantum Internet [0.42855555838080833]
We propose a new set of asynchronous routing protocols for quantum networks.
The protocols update the entanglement-link asynchronous topologyly, identify optimal entanglement-swapping paths, and preserve unused direct-link entanglements.
Our results indicate that asynchronous protocols achieve a larger upper bound with an appropriate setting and significantly higher entanglement rate than existing synchronous approaches.
arXiv Detail & Related papers (2023-12-21T21:14:21Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Entangled Pair Resource Allocation under Uncertain Fidelity Requirements [59.83361663430336]
In quantum networks, effective entanglement routing facilitates communication between quantum source and quantum destination nodes.
We propose a resource allocation model for entangled pairs and an entanglement routing model with a fidelity guarantee.
Our proposed model can reduce the total cost by at least 20% compared to the baseline model.
arXiv Detail & Related papers (2023-04-10T07:16:51Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Rate limits in quantum networks with lossy repeaters [0.6299766708197883]
We quantify how the presence of loss in repeater stations affect the maximum attainable rates for quantum communication.
In the linear chain scenario we show that, by increasing the number of repeater stations, the maximum rate cannot overcome a quantity which solely depends on the loss of a single station.
arXiv Detail & Related papers (2021-10-19T18:00:01Z) - Experimental multi-state quantum discrimination through a Quantum
network [63.1241529629348]
We have experimentally implemented two discrimination schemes in a minimum-error scenario based on a receiver featured by a network structure and a dynamical processing of information.
The first protocol achieves binary optimal discrimination, while the second one provides a novel approach to multi-state quantum discrimination, relying on the dynamical features of the network-like receiver.
arXiv Detail & Related papers (2021-07-21T09:26:48Z) - Overcoming the repeaterless bound in continuous-variable quantum
communication without quantum memories [0.0]
One of the main problems in quantum communications is how to achieve high rates at long distances.
We introduce a continuous-variable protocol which overcomes the repeaterless bound and scales like the single-repeater bound.
We show that our scheme can be extended to longer repeater chains using quantum memories.
arXiv Detail & Related papers (2021-05-08T04:02:17Z) - Simple efficient decoders for quantum key distribution over quantum
repeaters with encoding [1.218340575383456]
We study the implementation of quantum key distribution systems over quantum repeater infrastructures.
We propose two decoder structures for encoded repeaters that improve system performance.
We quantify the regimes of operation, where one class of repeater outperforms the other.
arXiv Detail & Related papers (2020-12-23T22:45:25Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Optimising repeater schemes for the quantum internet [0.0]
We study three different experimental quantum repeater implementations on their ability to distribute entanglement.
We use the algorithm to study three different experimental quantum repeater implementations on their ability to distribute entanglement.
arXiv Detail & Related papers (2020-06-22T13:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.