論文の概要: Deep kernel representations of latent space features for low-dose PET-MR imaging robust to variable dose reduction
- arxiv url: http://arxiv.org/abs/2409.06198v1
- Date: Tue, 10 Sep 2024 03:57:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 19:10:55.553652
- Title: Deep kernel representations of latent space features for low-dose PET-MR imaging robust to variable dose reduction
- Title(参考訳): 低用量PET-MR画像における潜時空間特徴の深部核表現
- Authors: Cameron Dennis Pain, Yasmeen George, Alex Fornito, Gary Egan, Zhaolin Chen,
- Abstract要約: 低線量ポジトロン放射トモグラフィ(PET)画像再構成法は、画像モダリティとしてPETを大幅に改善する可能性がある。
ディープラーニングは、画像再構成問題に事前情報を組み込んで、妥協された信号から定量的に正確な画像を生成する、有望な手段を提供する。
本稿では,カーネル表現を頑健に表現した深層潜伏空間の特徴を明示的にモデル化し,これまで見られなかった線量削減係数に対して頑健な性能を提供する手法を提案する。
- 参考スコア(独自算出の注目度): 0.09362267584678274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-dose positron emission tomography (PET) image reconstruction methods have potential to significantly improve PET as an imaging modality. Deep learning provides a promising means of incorporating prior information into the image reconstruction problem to produce quantitatively accurate images from compromised signal. Deep learning-based methods for low-dose PET are generally poorly conditioned and perform unreliably on images with features not present in the training distribution. We present a method which explicitly models deep latent space features using a robust kernel representation, providing robust performance on previously unseen dose reduction factors. Additional constraints on the information content of deep latent features allow for tuning in-distribution accuracy and generalisability. Tests with out-of-distribution dose reduction factors ranging from $\times 10$ to $\times 1000$ and with both paired and unpaired MR, demonstrate significantly improved performance relative to conventional deep-learning methods trained using the same data. Code:https://github.com/cameronPain
- Abstract(参考訳): 低線量ポジトロン放射トモグラフィ(PET)画像再構成法は、画像モダリティとしてPETを大幅に改善する可能性がある。
ディープラーニングは、画像再構成問題に事前情報を組み込んで、妥協された信号から定量的に正確な画像を生成する、有望な手段を提供する。
低線量PETの深層学習法は一般に条件が悪く、トレーニング分布に存在しない特徴を持つ画像に対して信頼性が低い。
本稿では,カーネル表現を頑健に表現した深層潜伏空間の特徴を明示的にモデル化し,これまで見られなかった線量削減係数に対して頑健な性能を提供する手法を提案する。
深い潜伏特徴の情報内容に関する追加の制約は、分布内精度と一般化可能性のチューニングを可能にする。
10ドルから1000ドルまでのディストリビューション量削減因子とペアとアンペアのMRの両方を併用したテストでは、同じデータを用いて訓練された従来のディープラーニング手法と比較して、性能が有意に向上した。
コード:https://github.com/cameronPain
関連論文リスト
- One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
極端画像再スケーリングのためのワンステップイメージ再スケーリング拡散(OSIRDiff)と呼ばれる新しいフレームワークを提案する。
OSIRDiffは、事前訓練されたオートエンコーダの潜在空間で再スケーリング操作を実行する。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルによって学習された強力な自然画像の先行を効果的に活用する。
論文 参考訳(メタデータ) (2024-08-17T09:51:42Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - Diffusion Transformer Model With Compact Prior for Low-dose PET Reconstruction [7.320877150436869]
低線量PET画像の再構成品質を高めるために,JCP(Joint compact prior)により導かれる拡散変圧器モデルを提案する。
DTMは拡散モデルの強力な分布マッピング能力と変圧器の容量を組み合わせて長距離依存を捉える。
本手法は放射線曝露リスクを軽減するだけでなく,早期診断や患者管理のためのPETイメージングツールも提供する。
論文 参考訳(メタデータ) (2024-07-01T03:54:43Z) - Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction [10.158713017984345]
分割ハンケル拡散(PHD)モデルを用いた低用量CT再構成法を提案する。
反復再構成段階では、反復微分方程式解法とデータ一貫性制約を併用して、取得した投影データを更新する。
その結果,PHDモデルを画像品質を維持しつつ,アーチファクトやノイズを低減し,有効かつ実用的なモデルとして検証した。
論文 参考訳(メタデータ) (2024-05-27T13:44:53Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network [14.381830012670969]
近年,低線量画像から高画質PET画像を生成する手法が,低線量画像の回収手法の最先端技術であることが報告されている。
これらの問題に対処するため、我々は自己教師付き適応残差推定生成対向ネットワーク(SS-AEGAN)を開発した。
SS-AEGANは、様々な線量還元因子による最先端の合成法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2023-10-24T06:43:56Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
ポジトロン・エミッション・トモグラフィ(PET)画像修復にDeep Image prior (DIP) が有効である。
DIPに基づくPET画像復調性能を改善するための自己教師付き事前学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-27T06:55:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。