NLP-Powered Repository and Search Engine for Academic Papers: A Case Study on Cyber Risk Literature with CyLit
- URL: http://arxiv.org/abs/2409.06226v1
- Date: Tue, 10 Sep 2024 05:41:40 GMT
- Title: NLP-Powered Repository and Search Engine for Academic Papers: A Case Study on Cyber Risk Literature with CyLit
- Authors: Linfeng Zhang, Changyue Hu, Zhiyu Quan,
- Abstract summary: We propose a novel framework that leverages Natural Language Processing (NLP) techniques.
This framework automates the retrieval, summarization, and clustering of academic literature within a specific research domain.
We introduce CyLit, an NLP-powered repository specifically designed for the cyber risk literature.
- Score: 9.621564860645513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the body of academic literature continues to grow, researchers face increasing difficulties in effectively searching for relevant resources. Existing databases and search engines often fall short of providing a comprehensive and contextually relevant collection of academic literature. To address this issue, we propose a novel framework that leverages Natural Language Processing (NLP) techniques. This framework automates the retrieval, summarization, and clustering of academic literature within a specific research domain. To demonstrate the effectiveness of our approach, we introduce CyLit, an NLP-powered repository specifically designed for the cyber risk literature. CyLit empowers researchers by providing access to context-specific resources and enabling the tracking of trends in the dynamic and rapidly evolving field of cyber risk. Through the automatic processing of large volumes of data, our NLP-powered solution significantly enhances the efficiency and specificity of academic literature searches. We compare the literature categorization results of CyLit to those presented in survey papers or generated by ChatGPT, highlighting the distinctive insights this tool provides into cyber risk research literature. Using NLP techniques, we aim to revolutionize the way researchers discover, analyze, and utilize academic resources, ultimately fostering advancements in various domains of knowledge.
Related papers
- Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
Bibliometric analysis is essential for understanding research trends, scope, and impact in urban science.
Traditional methods, relying on keyword searches, often fail to uncover valuable insights not explicitly stated in article titles or keywords.
We leverage Generative AI models, specifically transformers and Retrieval-Augmented Generation (RAG), to automate and enhance bibliometric analysis.
arXiv Detail & Related papers (2024-10-08T05:13:27Z) - The Nature of NLP: Analyzing Contributions in NLP Papers [77.31665252336157]
We quantitatively investigate what constitutes NLP research by examining research papers.
Our findings reveal a rising involvement of machine learning in NLP since the early nineties.
In post-2020, there has been a resurgence of focus on language and people.
arXiv Detail & Related papers (2024-09-29T01:29:28Z) - pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy [2.6952253149772996]
Pathfinder is a machine learning framework designed to enable literature review and knowledge discovery in astronomy.
Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context.
It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes.
arXiv Detail & Related papers (2024-08-02T20:05:24Z) - LLAssist: Simple Tools for Automating Literature Review Using Large Language Models [0.0]
LLAssist is an open-source tool designed to streamline literature reviews in academic research.
It uses Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process.
arXiv Detail & Related papers (2024-07-19T02:48:54Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - A Reliable Knowledge Processing Framework for Combustion Science using
Foundation Models [0.0]
The study introduces an approach to process diverse combustion research data, spanning experimental studies, simulations, and literature.
The developed approach minimizes computational and economic expenses while optimizing data privacy and accuracy.
The framework consistently delivers accurate domain-specific responses with minimal human oversight.
arXiv Detail & Related papers (2023-12-31T17:15:25Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
We introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature.
We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.
arXiv Detail & Related papers (2020-10-30T19:12:25Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.