Recurrent Neural Networks for Still Images
- URL: http://arxiv.org/abs/2409.06235v1
- Date: Tue, 10 Sep 2024 06:07:20 GMT
- Title: Recurrent Neural Networks for Still Images
- Authors: Dmitri, Lvov, Yair Smadar, Ran Bezen,
- Abstract summary: We argue that RNNs can effectively handle still images by interpreting the pixels as a sequence.
We introduce a novel RNN design tailored for two-dimensional inputs, such as images, and a custom version of BiDirectional RNN (BiRNN) that is more memory-efficient than traditional implementations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we explore the application of Recurrent Neural Network (RNN) for still images. Typically, Convolutional Neural Networks (CNNs) are the prevalent method applied for this type of data, and more recently, transformers have gained popularity, although they often require large models. Unlike these methods, RNNs are generally associated with processing sequences over time rather than single images. We argue that RNNs can effectively handle still images by interpreting the pixels as a sequence. This approach could be particularly advantageous for compact models designed for embedded systems, where resources are limited. Additionally, we introduce a novel RNN design tailored for two-dimensional inputs, such as images, and a custom version of BiDirectional RNN (BiRNN) that is more memory-efficient than traditional implementations. In our research, we have tested these layers in Convolutional Recurrent Neural Networks (CRNNs), predominantly composed of Conv2D layers, with RNN layers at or close to the end. Experiments on the COCO and CIFAR100 datasets show better results, particularly for small networks.
Related papers
- Investigating Sparsity in Recurrent Neural Networks [0.0]
This thesis focuses on investigating the effects of pruning and Sparse Recurrent Neural Networks on the performance of RNNs.
We first describe the pruning of RNNs, its impact on the performance of RNNs, and the number of training epochs required to regain accuracy after the pruning is performed.
Next, we continue with the creation and training of Sparse Recurrent Neural Networks and identify the relation between the performance and the graph properties of its underlying arbitrary structure.
arXiv Detail & Related papers (2024-07-30T07:24:58Z) - CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - Fully Spiking Variational Autoencoder [66.58310094608002]
Spiking neural networks (SNNs) can be run on neuromorphic devices with ultra-high speed and ultra-low energy consumption.
In this study, we build a variational autoencoder (VAE) with SNN to enable image generation.
arXiv Detail & Related papers (2021-09-26T06:10:14Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
Deep neural networks (DNNs) play an increasingly important role in various computer systems.
In order to create these networks, engineers typically specify a desired topology, and then use an automated training algorithm to select the network's weights.
Here, we propose to address this challenge by harnessing recent advances in DNN verification.
arXiv Detail & Related papers (2021-05-28T07:53:50Z) - An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks [0.5837881923712392]
We propose a new type of CNNs called Tropical Convolutional Neural Networks (TCNNs)
TCNNs are built on tropical convolutions in which the multiplications and additions in conventional convolutional layers are replaced by additions and min/max operations respectively.
We show that TCNN can achieve higher expressive power than ordinary convolutional layers on the MNIST and CIFAR10 image data set.
arXiv Detail & Related papers (2021-03-03T00:13:30Z) - Scalable Neural Tangent Kernel of Recurrent Architectures [8.487185704099923]
Kernels derived from deep neural networks (DNNs) in the infinite-width provide high performance in a range of machine learning tasks.
We extend the family of kernels associated with recurrent neural networks (RNNs) to more complex architectures that are bidirectional RNNs and RNNs with average pooling.
arXiv Detail & Related papers (2020-12-09T04:36:34Z) - Depthwise Separable Convolutions Versus Recurrent Neural Networks for
Monaural Singing Voice Separation [17.358040670413505]
We focus on singing voice separation, employing an RNN architecture, and we replace the RNNs with DWS convolutions (DWS-CNNs)
We conduct an ablation study and examine the effect of the number of channels and layers of DWS-CNNs on the source separation performance.
Our results show that by replacing RNNs with DWS-CNNs yields an improvement of 1.20, 0.06, 0.37 dB, respectively, while using only 20.57% of the amount of parameters of the RNN architecture.
arXiv Detail & Related papers (2020-07-06T12:32:34Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Visual Commonsense R-CNN [102.5061122013483]
We present a novel unsupervised feature representation learning method, Visual Commonsense Region-based Convolutional Neural Network (VC R-CNN)
VC R-CNN serves as an improved visual region encoder for high-level tasks such as captioning and VQA.
We extensively apply VC R-CNN features in prevailing models of three popular tasks: Image Captioning, VQA, and VCR, and observe consistent performance boosts across them.
arXiv Detail & Related papers (2020-02-27T15:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.