An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks
- URL: http://arxiv.org/abs/2103.02096v1
- Date: Wed, 3 Mar 2021 00:13:30 GMT
- Title: An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks
- Authors: Shiqing Fan, Ye Luo
- Abstract summary: We propose a new type of CNNs called Tropical Convolutional Neural Networks (TCNNs)
TCNNs are built on tropical convolutions in which the multiplications and additions in conventional convolutional layers are replaced by additions and min/max operations respectively.
We show that TCNN can achieve higher expressive power than ordinary convolutional layers on the MNIST and CIFAR10 image data set.
- Score: 0.5837881923712392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have been used in many machine learning
fields. In practical applications, the computational cost of convolutional
neural networks is often high with the deepening of the network and the growth
of data volume, mostly due to a large amount of multiplication operations of
floating-point numbers in convolution operations. To reduce the amount of
multiplications, we propose a new type of CNNs called Tropical Convolutional
Neural Networks (TCNNs) which are built on tropical convolutions in which the
multiplications and additions in conventional convolutional layers are replaced
by additions and min/max operations respectively. In addition, since tropical
convolution operators are essentially nonlinear operators, we expect TCNNs to
have higher nonlinear fitting ability than conventional CNNs. In the
experiments, we test and analyze several different architectures of TCNNs for
image classification tasks in comparison with similar-sized conventional CNNs.
The results show that TCNN can achieve higher expressive power than ordinary
convolutional layers on the MNIST and CIFAR10 image data set. In different
noise environments, there are wins and losses in the robustness of TCNN and
ordinary CNNs.
Related papers
- Recurrent Neural Networks for Still Images [0.0]
We argue that RNNs can effectively handle still images by interpreting the pixels as a sequence.
We introduce a novel RNN design tailored for two-dimensional inputs, such as images, and a custom version of BiDirectional RNN (BiRNN) that is more memory-efficient than traditional implementations.
arXiv Detail & Related papers (2024-09-10T06:07:20Z) - Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition [0.0]
Deep convolutional neural networks (CNNs) have been shown to be very successful in a wide range of image processing applications.
Due to their increasing number of model parameters and an increasing availability of large amounts of training data, parallelization strategies to efficiently train complex CNNs are necessary.
arXiv Detail & Related papers (2024-08-26T17:35:01Z) - CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
We propose a single CNN architecture equipped with continuous convolutional kernels for tasks on arbitrary resolution, dimensionality and length without structural changes.
We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential (1$mathrmD$) and visual data (2$mathrmD$)
Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
arXiv Detail & Related papers (2022-06-07T15:48:02Z) - Block-term Tensor Neural Networks [29.442026567710435]
We show that block-term tensor layers (BT-layers) can be easily adapted to neural network models, such as CNNs and RNNs.
BT-layers in CNNs and RNNs can achieve a very large compression ratio on the number of parameters while preserving or improving the representation power of the original DNNs.
arXiv Detail & Related papers (2020-10-10T09:58:43Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - Depthwise Separable Convolutions Versus Recurrent Neural Networks for
Monaural Singing Voice Separation [17.358040670413505]
We focus on singing voice separation, employing an RNN architecture, and we replace the RNNs with DWS convolutions (DWS-CNNs)
We conduct an ablation study and examine the effect of the number of channels and layers of DWS-CNNs on the source separation performance.
Our results show that by replacing RNNs with DWS-CNNs yields an improvement of 1.20, 0.06, 0.37 dB, respectively, while using only 20.57% of the amount of parameters of the RNN architecture.
arXiv Detail & Related papers (2020-07-06T12:32:34Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - A Light-Weighted Convolutional Neural Network for Bitemporal SAR Image
Change Detection [40.58864817923371]
We propose a lightweight neural network to reduce the computational and spatial complexity.
In the proposed network, we replace normal convolutional layers with bottleneck layers that keep the same number of channels between input and output.
We verify our light-weighted neural network on four sets of bitemporal SAR images.
arXiv Detail & Related papers (2020-05-29T04:01:32Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.