Inference is All You Need: Self Example Retriever for Cross-domain Dialogue State Tracking with ChatGPT
- URL: http://arxiv.org/abs/2409.06243v1
- Date: Tue, 10 Sep 2024 06:24:46 GMT
- Title: Inference is All You Need: Self Example Retriever for Cross-domain Dialogue State Tracking with ChatGPT
- Authors: Jihyun Lee, Gary Geunbae Lee,
- Abstract summary: We propose a novel method that leverages inference and in-context learning with ChatGPT for domain transfer in dialogue state tracking.
Experimental results on the MultiWOZ dataset demonstrate competitive performance and promising generalization across domains.
- Score: 19.93135583452212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional dialogue state tracking approaches heavily rely on extensive training data and handcrafted features, limiting their scalability and adaptability to new domains. In this paper, we propose a novel method that leverages inference and in-context learning with ChatGPT for domain transfer in dialogue state tracking, without any parameter updates. By guiding ChatGPT's chain of thought, we enable it to retrieve relevant examples and generalize knowledge to accurately infer dialogue states, solely through inference. Experimental results on the MultiWOZ dataset demonstrate competitive performance and promising generalization across domains. Our parameter-free approach offers a scalable and adaptable solution, opening new research directions in domain transfer learning.
Related papers
- Continual Dialogue State Tracking via Example-Guided Question Answering [48.31523413835549]
We propose reformulating dialogue state tracking as a bundle of granular example-guided question answering tasks.
Our approach alleviates service-specific memorization and teaches a model to contextualize the given question and example.
We find that a model with just 60M parameters can achieve a significant boost by learning to learn from in-context examples retrieved by a retriever trained to identify turns with similar dialogue state changes.
arXiv Detail & Related papers (2023-05-23T06:15:43Z) - Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer in
Prompt Tuning [47.336815771549524]
Skeleton-Assisted Prompt Transfer improves prompt transfer from dialogue state tracking to dialogue summarization.
We propose a novel approach with perturbation-based probes requiring neither annotation effort nor domain knowledge.
In-depth analyses demonstrate the effectiveness of our method in facilitating cross-task knowledge transfer in few-shot dialogue summarization.
arXiv Detail & Related papers (2023-05-20T03:32:48Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - PoE: a Panel of Experts for Generalized Automatic Dialogue Assessment [58.46761798403072]
A model-based automatic dialogue evaluation metric (ADEM) is expected to perform well across multiple domains.
Despite significant progress, an ADEM that works well in one domain does not necessarily generalize to another.
We propose a Panel of Experts (PoE) network that consists of a shared transformer encoder and a collection of lightweight adapters.
arXiv Detail & Related papers (2022-12-18T02:26:50Z) - DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context
Tuning [7.5700317050237365]
We propose DiSTRICT, a generalizable in-context tuning approach for Dialogue State Tracking (DST)
DSTRICT retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates.
Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings.
arXiv Detail & Related papers (2022-12-06T09:40:15Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - Domain-Oriented Prefix-Tuning: Towards Efficient and Generalizable
Fine-tuning for Zero-Shot Dialogue Summarization [29.700113636257544]
We propose an efficient and generalizable Domain-Oriented Prefix-tuning model to alleviate domain entanglement.
We conduct zero-shot experiments and build domain adaptation benchmarks on two multi-domain dialogue summarization datasets.
arXiv Detail & Related papers (2022-04-09T02:28:22Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
Multi-party conversations are implicitly organized by semantic level correlations across the interactive turns.
dialogue discourse analysis can be applied to predict the dependency structure and relations between the elementary discourse units.
Existing corpora with dialogue discourse annotation are collected from specific domains with limited sample sizes.
arXiv Detail & Related papers (2021-10-09T09:36:22Z) - Dynamic Fusion Network for Multi-Domain End-to-end Task-Oriented Dialog [70.79442700890843]
We propose a novel Dynamic Fusion Network (DF-Net) which automatically exploit the relevance between the target domain and each domain.
With little training data, we show its transferability by outperforming prior best model by 13.9% on average.
arXiv Detail & Related papers (2020-04-23T08:17:22Z) - Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue
State Tracking [32.36259992245]
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation.
For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths.
We utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST.
arXiv Detail & Related papers (2020-04-07T13:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.