論文の概要: Seam Carving as Feature Pooling in CNN
- arxiv url: http://arxiv.org/abs/2409.06311v1
- Date: Tue, 10 Sep 2024 08:11:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:40:09.111375
- Title: Seam Carving as Feature Pooling in CNN
- Title(参考訳): CNNの機能ポーリングとしてのシーム彫刻
- Authors: Mohammad Imrul Jubair,
- Abstract要約: 本研究では,画像分類作業における畳み込みニューラルネットワーク(CNN)の機能プーリング手法としてのシーム彫刻の可能性について検討する。
Caltech-UCSD Birds 200-2011 データセットを用いた実験により,シーム彫刻に基づく CNN は最大プーリングを用いたモデルに比べて優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates the potential of seam carving as a feature pooling technique within Convolutional Neural Networks (CNNs) for image classification tasks. We propose replacing the traditional max pooling layer with a seam carving operation. Our experiments on the Caltech-UCSD Birds 200-2011 dataset demonstrate that the seam carving-based CNN achieves better performance compared to the model utilizing max pooling, based on metrics such as accuracy, precision, recall, and F1-score. We further analyze the behavior of both approaches through feature map visualizations, suggesting that seam carving might preserve more structural information during the pooling process. Additionally, we discuss the limitations of our approach and propose potential future directions for research.
- Abstract(参考訳): 本研究では,画像分類作業における畳み込みニューラルネットワーク(CNN)の機能プーリング手法としてのシーム彫刻の可能性について検討する。
従来の最大プール層をシーム彫刻操作に置き換えることを提案する。
筆者らはCaltech-UCSD Birds 200-2011データセットを用いて, 精度, 精度, リコール, F1スコアなどの指標に基づいて, 最大プーリングを利用したモデルと比較して, シーム彫刻に基づくCNNの方が優れた性能が得られることを示した。
さらに特徴地図の可視化により, 両手法の挙動を解析し, シーム彫刻は, プールの過程で, より構造的な情報を保存できる可能性が示唆された。
さらに,本手法の限界について考察し,今後の研究の方向性を提案する。
関連論文リスト
- Image Classification using Fuzzy Pooling in Convolutional Kolmogorov-Arnold Networks [0.0]
我々は,コルモゴロフ・アルノルドネットワーク(KAN)分類ヘッドとファジィプールを畳み込みニューラルネットワーク(CNN)に統合するアプローチを提案する。
比較分析により,kan と Fuzzy Pooling による改良 CNN アーキテクチャは,従来のモデルと同等あるいは高い精度で実現可能であることが示された。
論文 参考訳(メタデータ) (2024-07-23T08:18:04Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
予測対象として高レベルな文脈化機能を使用することで,優れた性能が得られることを示す。
具体的には、シンプルで効率的な3D行動表現学習フレームワークであるSkeleton2vecを提案する。
提案するSkeleton2vecは,従来の手法より優れ,最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-01-01T12:08:35Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Efficient Quantum Feature Extraction for CNN-based Learning [5.236201168829204]
本稿では,古典的CNNモデルの識別可能性を高めるために,量子古典的なディープネットワーク構造を提案する。
我々は、より強力な関数近似器であるPQCを構築し、受容場内の特徴を捉えるためにより複雑な構造を持つ。
その結果, アンザッツの表現性が高いモデルでは, 低コストで精度が高いことが判明した。
論文 参考訳(メタデータ) (2022-01-04T17:04:07Z) - Interflow: Aggregating Multi-layer Feature Mappings with Attention
Mechanism [0.7614628596146599]
本稿では,従来のCNNモデルに特化してInterflowアルゴリズムを提案する。
Interflowは、深さに応じてCNNを複数のステージに分割し、各ステージの特徴マッピングによって予測する。
勾配の消失問題を緩和し、ネットワーク深度選択の難しさを低減し、過度に適合できる問題を緩和することができる。
論文 参考訳(メタデータ) (2021-06-26T18:22:01Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Scene Understanding for Autonomous Driving [0.0]
Detectron2で提示されたRetinaNet, Faster R-CNN, Mask R-CNNの異なる構成の挙動を検討する。
関心のあるデータセット上でこれらのモデルを微調整した後、パフォーマンスの大幅な改善を観察します。
文脈外のデータセットを用いて異常な状況下で推論を行い、興味深い結果を示す。
論文 参考訳(メタデータ) (2021-05-11T09:50:05Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
グラフネットワーク(GCN)はユークリッド以外のデータ構造をモデル化するのに非常に成功した。
ほとんどのGCNベースのアクション認識手法は、計算量の多いディープフィードフォワードネットワークを使用して、全てのスケルトンをアクションで処理する。
本稿では,骨格に基づく行動認識の効率を高めるための時間的アテンションモジュール(TAM)を提案する。
論文 参考訳(メタデータ) (2020-10-23T08:01:55Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。