Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development
- URL: http://arxiv.org/abs/2409.06367v1
- Date: Tue, 10 Sep 2024 09:44:38 GMT
- Title: Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development
- Authors: Tianwu Lei, Bohan Wang, Silin Chen, Shurong Cao, Ningmu Zou,
- Abstract summary: We present the Texture-AD benchmark based on representative texture-based anomaly detection.
This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates.
To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world.
- Score: 8.290951816115887
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Anomaly detection is a crucial process in industrial manufacturing and has made significant advancements recently. However, there is a large variance between the data used in the development and the data collected by the production environment. Therefore, we present the Texture-AD benchmark based on representative texture-based anomaly detection to evaluate the effectiveness of unsupervised anomaly detection algorithms in real-world applications. This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates acquired under different optical schemes. In addition, it includes more than 10 different types of defects produced during real manufacturing processes, such as scratches, wrinkles, color variations and point defects, which are often more difficult to detect than existing datasets. All anomalous areas are provided with pixel-level annotations to facilitate comprehensive evaluation using anomaly detection models. Specifically, to adapt to diverse products in automated pipelines, we present a new evaluation method and results of baseline algorithms. The experimental results show that Texture-AD is a difficult challenge for state-of-the-art algorithms. To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world. The dataset is available at https://XXX.
Related papers
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Self-Supervised Time-Series Anomaly Detection Using Learnable Data Augmentation [37.72735288760648]
We propose a learnable data augmentation-based time-series anomaly detection (LATAD) technique that is trained in a self-supervised manner.
LATAD extracts discriminative features from time-series data through contrastive learning.
As per the results, LATAD exhibited comparable or improved performance to the state-of-the-art anomaly detection assessments.
arXiv Detail & Related papers (2024-06-18T04:25:56Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection [46.495442380849894]
We propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD.
It contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets.
To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics.
arXiv Detail & Related papers (2024-03-19T09:44:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Anomaly Detection in Automated Fibre Placement: Learning with Data
Limitations [3.103778949672542]
We present a comprehensive framework for defect detection and localization in Automated Fibre Placement.
Our approach combines unsupervised deep learning and classical computer vision algorithms.
It efficiently detects various surface issues while requiring fewer images of composite parts for training.
arXiv Detail & Related papers (2023-07-15T22:13:36Z) - IM-IAD: Industrial Image Anomaly Detection Benchmark in Manufacturing [88.35145788575348]
Image anomaly detection (IAD) is an emerging and vital computer vision task in industrial manufacturing.
The lack of a uniform IM benchmark is hindering the development and usage of IAD methods in real-world applications.
We construct a comprehensive image anomaly detection benchmark (IM-IAD), which includes 19 algorithms on seven major datasets.
arXiv Detail & Related papers (2023-01-31T01:24:45Z) - Unsupervised Visual Defect Detection with Score-Based Generative Model [17.610722842950555]
We focus on the unsupervised visual defect detection and localization tasks.
We propose a novel framework based on the recent score-based generative models.
We evaluate our method on several datasets to demonstrate its effectiveness.
arXiv Detail & Related papers (2022-11-29T11:06:29Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.