HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset
- URL: http://arxiv.org/abs/2504.12689v1
- Date: Thu, 17 Apr 2025 06:31:26 GMT
- Title: HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset
- Authors: Qishan Wang, Shuyong Gao, Junjie Hu, Jiawen Yu, Xuan Tong, You Li, Wenqiang Zhang,
- Abstract summary: We introduce the Heterogeneous Same-Sort Industrial Anomaly Detection dataset.<n>This dataset contains 8,580 images of metallic-like industrial parts and precise anomaly annotations.<n>We evaluate popular IAD methods on this dataset under multi-class and class-separated settings.
- Score: 24.567315065147824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-class Unsupervised Anomaly Detection algorithms (MUAD) are receiving increasing attention due to their relatively low deployment costs and improved training efficiency. However, the real-world effectiveness of MUAD methods is questioned due to limitations in current Industrial Anomaly Detection (IAD) datasets. These datasets contain numerous classes that are unlikely to be produced by the same factory and fail to cover multiple structures or appearances. Additionally, the defects do not reflect real-world characteristics. Therefore, we introduce the Heterogeneous Same-Sort Industrial Anomaly Detection (HSS-IAD) dataset, which contains 8,580 images of metallic-like industrial parts and precise anomaly annotations. These parts exhibit variations in structure and appearance, with subtle defects that closely resemble the base materials. We also provide foreground images for synthetic anomaly generation. Finally, we evaluate popular IAD methods on this dataset under multi-class and class-separated settings, demonstrating its potential to bridge the gap between existing datasets and real factory conditions. The dataset is available at https://github.com/Qiqigeww/HSS-IAD-Dataset.
Related papers
- A Dataset for Semantic Segmentation in the Presence of Unknowns [49.795683850385956]
Existing datasets allow evaluation of only knowns or unknowns - but not both.<n>We propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments.<n>The dataset is twice larger than existing anomaly segmentation datasets.
arXiv Detail & Related papers (2025-03-28T10:31:01Z) - Deep evolving semi-supervised anomaly detection [14.027613461156864]
The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD)
The paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection.
arXiv Detail & Related papers (2024-12-01T15:48:37Z) - AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation [43.583735469794675]
Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery.<n>There is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms.<n>This paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD.
arXiv Detail & Related papers (2024-11-23T09:04:33Z) - VMAD: Visual-enhanced Multimodal Large Language Model for Zero-Shot Anomaly Detection [19.79027968793026]
Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects.
Existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts.
We propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception.
arXiv Detail & Related papers (2024-09-30T09:51:29Z) - Texture-AD: An Anomaly Detection Dataset and Benchmark for Real Algorithm Development [8.290951816115887]
We present the Texture-AD benchmark based on representative texture-based anomaly detection.
This dataset includes images of 15 different cloth, 14 semiconductor wafers and 10 metal plates.
To our knowledge, Texture-AD is the first dataset to be devoted to evaluating industrial defect detection algorithms in the real world.
arXiv Detail & Related papers (2024-09-10T09:44:38Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection [46.495442380849894]
We propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD.
It contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets.
To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics.
arXiv Detail & Related papers (2024-03-19T09:44:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Industrial Anomaly Detection with Domain Shift: A Real-world Dataset and
Masked Multi-scale Reconstruction [2.921945366485149]
Industrial anomaly detection (IAD) is crucial for automating industrial quality inspection.
Existing IAD datasets focus on the diversity of data categories.
We propose the Aero-engine Blade Anomaly Detection (AeBAD) dataset, consisting of two sub-datasets.
arXiv Detail & Related papers (2023-04-05T04:07:54Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.