論文の概要: Coarse-Grained Sense Inventories Based on Semantic Matching between English Dictionaries
- arxiv url: http://arxiv.org/abs/2409.06386v1
- Date: Tue, 10 Sep 2024 10:08:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:10:00.492211
- Title: Coarse-Grained Sense Inventories Based on Semantic Matching between English Dictionaries
- Title(参考訳): 英語辞書のセマンティックマッチングに基づく粗粒センスインベントリ
- Authors: Masato Kikuchi, Masatsugu Ono, Toshioki Soga, Tetsu Tanabe, Tadachika Ozono,
- Abstract要約: 我々はケンブリッジの辞書やWordNetの感覚定義とセマンティックにマッチングし、より粗い感覚の在庫を新たに開発する。
提案された在庫の利点は、大規模資源への依存度が低いこと、密接に関連する感覚の集約性の向上、CEFRレベルの割り当て、拡張と改善の容易さである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: WordNet is one of the largest handcrafted concept dictionaries visualizing word connections through semantic relationships. It is widely used as a word sense inventory in natural language processing tasks. However, WordNet's fine-grained senses have been criticized for limiting its usability. In this paper, we semantically match sense definitions from Cambridge dictionaries and WordNet and develop new coarse-grained sense inventories. We verify the effectiveness of our inventories by comparing their semantic coherences with that of Coarse Sense Inventory. The advantages of the proposed inventories include their low dependency on large-scale resources, better aggregation of closely related senses, CEFR-level assignments, and ease of expansion and improvement.
- Abstract(参考訳): WordNetは、意味的関係を通じて単語接続を視覚化する、手作りのコンセプト辞書としては最大級である。
自然言語処理タスクのワードセンスインベントリとして広く使用されている。
しかし、WordNetのきめ細かい感覚は、ユーザビリティを制限しているとして批判されている。
本稿では,ケンブリッジの辞書とWordNetの感覚定義を意味的にマッチングし,より粗い感覚の在庫を新たに開発する。
それらのセマンティック・コヒーレンスと粗いセンス・インベントリのセマンティック・コヒーレンスを比較して、在庫の有効性を検証する。
提案された在庫の利点は、大規模資源への依存度が低いこと、密接に関連する感覚の集約性の向上、CEFRレベルの割り当て、拡張と改善の容易さである。
関連論文リスト
- Semantic Specialization for Knowledge-based Word Sense Disambiguation [12.573927420408365]
知識に基づくWord Sense Disambiguation (WSD) のための有望なアプローチは、ある文中の対象語に対して計算された単語に最も近い文脈的埋め込みを持つ感覚を選択することである。
本稿では,文脈適応型埋め込みを語彙知識のみを用いてWSDタスクに適応させるWSDのセマンティック・スペシャライゼーションを提案する。
論文 参考訳(メタデータ) (2023-04-22T07:40:23Z) - Disentangling Learnable and Memorizable Data via Contrastive Learning
for Semantic Communications [81.10703519117465]
セマンティック・レディにするために、ソースデータをアンタングルする新しい機械推論フレームワークが提案されている。
特に、データ上でインスタンスとクラスタの識別を行う新しいコントラスト学習フレームワークが提案されている。
信頼度の高い深いセマンティッククラスタは、学習可能でセマンティックリッチなデータだと考えられている。
シミュレーションの結果は, セマンティック・インパクトとミニマリズムの観点から, コントラスト学習アプローチの優位性を示した。
論文 参考訳(メタデータ) (2022-12-18T12:00:12Z) - Connect-the-Dots: Bridging Semantics between Words and Definitions via
Aligning Word Sense Inventories [47.03271152494389]
Word Sense Disambiguationは、そのコンテキストに応じて、ある単語の正確な意味を自動的に識別することを目的としている。
既存の教師付きモデルは、限られた訓練データのために稀な単語感覚の正確な予測に苦慮している。
我々は,定義文を異なる意味の在庫から同じ意味に整合させ,豊富な語彙知識を収集する光沢アライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-10-27T00:04:33Z) - Large Scale Substitution-based Word Sense Induction [48.49573297876054]
本稿では,事前学習されたマスキング言語モデル(MLM)に基づく単語センス誘導手法を提案する。
その結果、コーパス由来の感覚インベントリに基づいて感覚タグ付けされ、各感覚が指示語に関連付けられているコーパスとなる。
本手法を用いた英語ウィキペディアの評価では,Babelfy などの WSD 手法と比較しても,誘導された感覚とインスタンスごとの感覚代入の両方が高品質であることがわかった。
論文 参考訳(メタデータ) (2021-10-14T19:40:37Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
WordNetの豊富なセマンティック構造を活用して、マルチセンス埋め込みの品質を高めます。
M-SEの新たな分布意味類似度測定法を先行して導出する。
WSDとWordの類似度タスクを含む11のベンチマークデータセットの評価結果を報告します。
論文 参考訳(メタデータ) (2021-02-27T14:36:55Z) - SensPick: Sense Picking for Word Sense Disambiguation [1.1429576742016154]
我々は,対象単語の文脈情報と関連する光沢情報の両方を用いて,単語とグルースの集合間の意味的関係をモデル化する。
We propose SensPick, a type of stacked bidirectional Long Short Term Memory (LSTM) network to perform the WSD task。
論文 参考訳(メタデータ) (2021-02-10T04:52:42Z) - R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic
Matching [58.72111690643359]
文意味マッチングのための関係学習ネットワーク(R2-Net)を提案する。
最初にBERTを使用して、グローバルな視点から入力文をエンコードします。
次に、cnnベースのエンコーダは、ローカルな視点からキーワードやフレーズ情報をキャプチャするように設計されている。
関係情報抽出にラベルを十分に活用するために,関係分類タスクの自己教師付き関係性を導入する。
論文 参考訳(メタデータ) (2020-12-16T13:11:30Z) - Speakers Fill Lexical Semantic Gaps with Context [65.08205006886591]
我々は単語の語彙的あいまいさを意味のエントロピーとして運用する。
単語のあいまいさの推定値と,WordNetにおける単語の同義語数との間には,有意な相関関係が認められた。
これは、あいまいさの存在下では、話者が文脈をより情報的にすることで補うことを示唆している。
論文 参考訳(メタデータ) (2020-10-05T17:19:10Z) - Moving Down the Long Tail of Word Sense Disambiguation with
Gloss-Informed Biencoders [79.38278330678965]
Word Sense Disambiguation (WSD)の主な障害は、単語感覚が均一に分散されないことである。
本稿では,(1)対象語とその周囲の文脈を独立に埋め込んだバイエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2020-05-06T04:21:45Z) - Don't Neglect the Obvious: On the Role of Unambiguous Words in Word
Sense Disambiguation [5.8523859781812435]
本稿では,現在最先端の伝搬モデルを用いて,単語知覚埋め込みのカバレッジと品質を拡張できることを示す。
UWA(Unambiguous Word s)データセットを導入し、最先端の伝搬モデルを用いて単語感覚埋め込みのカバレッジと品質を拡張する方法を示す。
論文 参考訳(メタデータ) (2020-04-29T16:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。